M.Sc., **Physics**

Outcome Based Education Curriculum, Scheme & Syllabus

Batch: 2023-2025

Department of Physics

NGM College, Pollachi

Department of Physics

Vision

The ultimate goal of the Department of Physics is to bring Eminence and Excellence in Teaching and Learning processes, and to fetch ours as one of the Benchmark Departments with potential for academic excellence.

Mission

To execute the teaching profession to bring the students as an asset for a productive and fascinating career, successful in their life, and to realize the learning with real-world experience.

Program Educational Objectives:

PEO1	Develop a strong research skill that includes theoretical, experimental and computational Physics.					
PEO2	Uphold a sense of academic and social ethics necessary in fulfilling their career objectives					
PEO3	Function effectively as an individual or as a team member in research environment and related fields					
PEO4	Infuse necessary skill and knowledge to implement new technological approaches in Physics and allied fields					
PEO5	Acquire jobs in premier institutes and reputed organizations					
PEO6	Ability to meet the challenges as an entrepreneur					

Program Outcomes:

PO1	Acquire coherent knowledge and skills within the subject area and emerging development in the fields of Physics (K1/K2)
PO2	Apply appropriate physical principles and methodologies to solve wide range of problems in Physics and its related area of technology (K3)
PO3	Recognize and analyze the importance of different approximation and mathematical methods to describe the physical world (K4)
PO4	Plan, investigate, analyze, interpret, report the findings of the experiment methodically (K5)
PO5	Establish a relationship with theory and experiment by applying to address professional and ethical responsibilities including a respect for diversity (K3)
PO6	Recognize, appreciate and adapt to the different value systems and accept responsibility for sustainable development (K6)

Program Specific Outcomes:

Department of Physics, NGM College, Pollachi

PSO – 01	Hone the knowledge and understanding on the core concepts of physics and apply the generic skills to unravel the nonpareil physical marvels of nature
PSO – 02	Develop a clear insight on the modern tools and techniques to attain a prosperous career with intelligent perception, involvement and innovation

Mapping

PEOs POs PSOs	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	М	L	Н	М	L
PO2	М	L	L	Н	L
РОЗ	Н	L	L	М	L
PO4	Н	L	М	L	L
PO5	М	L	Н	L	L
PO6	L	L	Н	L	L
PSO1	М	L	L	Н	L
PSO2	L	М	L	Н	L

M.Sc Physics Curriculum and Scheme of Examination under CBCS (2023-2025)

Subject Code Subjects		Ins. Hrs Per Week	Examinations				Credits
			Dur. Hrs	CIA	ESE	Total	
	SEMEST	TER I					
23 PPS 101	CC I: Mathematical Physics	5	3	25	75	100	5
23 PPS 102	CC II: Classical Mechanics	5	3	25	75	100	4
23 PPS 103	CC III: Statistical Mechanics	5	3	25	75	100	5
23 PPS 1E1/ 23 PPS 1E2	CC Elective I :Applied Electronics/ Industrial Electronics	5	3	25	75	100	5
	General Physics lab I	4					
	Electronics lab I	4					
						400	19
	SEMES	TER II					
23 PPS 204	CC IV: Quantum Mechanics I	5	3	25	75	100	5
23 PPS 205	CC V: Electromagnetic theory & Electrodynamics	5	3	25	75	100	5
23 PPS 206	CC VI: Condensed Matter Physics	5	3	25	75	100	5
23 PPS 2E3/ 23 PPS 2E4	CC Elective II :Electronic Communications and Cyber security/ Data Analysis Techniques	5	3	25	75	100	4
23 PPS 207	CC VII: General Physics lab I	4	4	25	75	100	3
23 PPS 208	CC VIII: Electronics lab I	4	4	25	75	100	3
23 PPS 2N1/ 23 PPS 2N2	Non Major Elective: Non Conventional Energy sources/ Biomedical Instrumentation	1	3	-	100	100	2
						700	27
	SEMEST	FER III					
23 PPS 309	CC IX: Quantum Mechanics II	5	3	25	75	100	5
23 PPS 310	CC X: Molecular Spectroscopy	5	3	25	75	100	5
23 PPS 3E5/ 23 PPS 3E6	CC Elective III : Thinfilms & Nanoscience/ Materials Physics & Processing Techniques	5	3	25	75	100	5
23 VAD 301	Value Added Course: Python Programming	-	-	-	-	-	Grade
23 PPS 207	General Physics lab II	4					
23 PPS 208	Electronics lab II	4					
	Project	3		1			
						300	15

Subject Code	Subject Code Subjects		Examinations				Credits	
			Dur. Hrs	CIA	ESE	Total		
	SEMESTER IV							
23 PPS 411	CC XI: Lasers & Non-linear optics	5	3	25	75	100	5	
23 PPS 412	CC XII: Nuclear & Particle Physics	5	3	25	75	100	5	
23 PPS 4E7/ 23 PPS 4E8	CC Elective IV : Microprocessor & Object Oriented Programming With C++/ Introduction to Data Analytics	5	3	25	75	100	5	
23 PPS 413	CC XIII: General Physics lab II	4	4	25	75	100	3	
23PPS 414	CC XIV: Electronics lab II	4	4	25	75	100	3	
23 PPS 415	CC XV: Computer lab in C++	2	3	25	75	100	2	
23 PPS 416	CC XVI: Project	3	-	100	100	200	6	
						800	29	
	Total					2200	90	

* Any one MOOC courses are compulsory and to be completed at the end of 2nd semester

* Value added Programme - 23 VAD 301 Python Programming to be completed at the 3rd semester

Question Paper Pattern (Based on Bloom's Taxonomy)

K1-Remember; K2- Understanding; K3- Apply; K4-Analyze; K5- Evaluate

1. Theory Examinations: 75 Marks (Part I, II, & III)

(i) Test- I & II, ESE:

Knowledge	Section	Marks	Description	Total
Level				
K1 & K2 (Q1 - 10)	A (Q1 – 5 MCQ)			
	(Q6 – 10 Define /	10 * 1 = 10	MCQ / Define	
	Short Answer / MCQ)			75
K3 (Q11-15)	B (Either or pattern)	5 * 5 = 25	Short Answers	10
K4 & K5 (Q16 – 20)	C (Either or pattern)	5 * 8 = 40	Descriptive/	
			Detailed	

2. Theory Examinations: 38 Marks (3 Hours Examination) (Part III: If applicable)

Knowledge Level	Section	Marks	Description	Total
K1 & K2 (Q1 - 10)	A (Q 1 – 10 MCQ)	10 * 1 = 10	MCQ	
K3 (Q11 – 15)	B (Either or pattern)	5 * 3 = 15	Short Answers	50 (Reduced
K4 & K5 (Q16-20)	C (Either or pattern)	5 * 5 = 25	Descriptive/ Detailed	to 38)

3. Theory Examinations: 38 Marks (2 Hours Examination) (Part IV: If applicable)

Knowledge Level	Section	Marks	Description	Total
K1 & K2 (Q1-10)	A (Q1 – 5 MCQ) (Q6–10 Define / Short Answer)	10 * 1 = 10	MCQ / Define	50 (Reduced to 38)
K3, K4 & K5 (Q11-15)	B (Either or pattern)	5 * 8 = 40	Descriptive/ Detailed	

4. Practical Examinations:

Paper	Maximum	Marks for		Components for CIA		
	Marks	CIA	CEE	Tests	Skill	Record Note
Practical (CC / Elective)	50	20	30	05	10	05
Practical (CC / Elective)	75	30	45	10	15	05
Practical (CC / Elective)	100	40	60	15	20	05

5. Project:

Paper	Maximum		Marks for	larks for	
	Marks	CIA	CIA CEE		
			Evaluation Viva-ve		
Project	100	25	50	25	
Project	150	40	75	35	
Project	200	50	100	50	

* CIA - Continuous Internal Assessment & CEE - Comprehensive External Examinations

Components of Continuous Internal Assessment (CIA)

THEORY

Maximum Marks: 100; CIA Mark: 25; CEE Mark: 75;

Components	Calculation	CIA Total	
Test 1	75		
Test 2 / Model	75	(75+75+15+10)/7	25
Assignment / Digital Assignment	15	(13+13+13+10)/1	23
Others*	10		

*Others may include the following: Seminar / Socratic Seminars,Group Discussion, Role Play, APS, Class participation, Case Studies Presentation, Field Work, Field Survey, Term Paper, Workshop / Conference Participation, Presentation of Papers in Conferences, Quiz, Report / Content Writing, etc.

PROJECT

Maximum Marks: 200; CIA Mark: 50; CEE Mark: 150;

Components		Calculation	CIA Total	
Review I	10			
Review II	10	10 10 10 00		
Review III	10	10+ 10+10+20	50	
Report Submission	20			

* Components for 'Review' may include the following:

Originality of Idea, Relevance to Current Trend, Candidate Involvement, and Presentation of Report for Commerce, Management & Social Work.

Synopsis, System Planning, Design, Coding, Input form, Output format, Preparation of Report & Submission for Computer Science cluster.

<u>Continuous Internal Assessment for Project</u> For Science Stream

The Final year Science students should undergo a project work during (V/VI) semester

- ✤ The period of study is for 4 weeks.
- Project / Internship work has to be done in an industrial organization (or) work on any industrial problem outside the organization is allowed.
- Students are divided into groups and each group is guided by a Mentor.
- The group should not exceed four students, also interested student can undergo individually.
- A problem is chosen, objectives are framed, and data is collected, analyzed and documented in the form of a report / Project.
- Viva Voce is conducted at the end of this semester, by an External Examiner and concerned Mentor (Internal Examiner).
- ◆ Project work constitutes 200 marks, out of which 50 is CIA and 150 is CEE Marks.

Mark Split UP

CIA	CEE	Total
50	150	200

S. No	Components for CIA	Marks				
1	Review – I *	10				
2	Review – II *	10				
3	Review – III *	10				
4	Rough Draft Submission / Report	20				
	Submission					
	Total					

* **Review I: -** Problem Analysis

* **Review II: -** Data collection & Design

* Review III: - Data Analysis

S. No	Components for CEE	Marks		
1	Evaluation *	100		
2	Viva-Voce	50		
	Total			

* Evaluation includes Problem and Hypothesis, Experimental Design / Materials / Procedure, Variables / Controls / Sample Size, and Data Collection / Analysis.

STUDENT SEMINAR EVALUATION RUBRIC

Grading Scale:

Α	В	С	D
8-10	5-7	3-4	0-2

CRITERIA	A - Excellent	B - Good	C - Average	D - Inadequate
Organization of presentation	Information presented as an interesting story in a logical, easy-to- follow sequence	Information presented in logical sequence; easy to follow	Most of the information is presented in sequence	Hard to follow; sequence of information jumpy
Knowledge of the subject & References	Demonstrated full knowledge; answered all questions with elaboration & Material sufficient for clear understanding AND exceptionally	At ease; answered all questions but failed to elaborate & Material sufficient for clear understanding	Ateasewithinformation;answeredmostquestions&Materialsufficientforclearunderstandingbutnotclearlypresented	Does not have a grasp of information; answered only rudimentary Questions & Material not clearly related to the topic OR
Presentation Skills using ICT Tools	presented Uses graphics that explain and reinforce text and presentation	AND effectively presented Uses graphics that explain the text and presentation	Uses graphics that relate to text and presentation	background dominated seminar Uses graphics that rarely support text and presentation
Eye Contact	Refers to slides to make points; engaged with the audience	Refers to slides to make points; eye contact the majority of the time	Refers to slides to make points; occasional eye contact	Reads most slides; no or just occasional eye contact
Elocution – (Ability to speak English language)	Correct, precise pronunciation of all terms The voice is clear and steady; the audience can hear well at all times	Incorrectly pronounces a few terms Voice is clear with few fluctuations; the audience can hear well most of the time	Incorrectly pronounces some terms Voice fluctuates from low to clear; difficult to hear at times	Mumbles and/or Incorrectly pronounces some terms Voice is low; difficult to hear

WRITTEN ASSIGNMENT RUBRIC

Grading Scale:

Α	В	С	D	F
13-15	10-12	7-9	4-6	0-3

CRITERIO N	A - Excellent	B - Good	C - Average	D - Below Average	F - Inadequate
Content & Focus	Hits on almost all content exceptionally clear	Hits on most key points and the writing is interesting	Hits in basic content and writing are understandable	Hits on a portion of content and/or digressions and errors	Completely off track or did not submit
Sentence Structure & Style	 * Word choice is rich and varies * Writing style is consistently strong * Students own formal language 	 * Word choice is clear and reasonably precise * Writing language is appropriate to the topic * Words convey intended message 	 * Word choice is basic * Most writing language is appropriate to the topic * Informal language 	 * Word choice is vague * Writing language is not appropriate to the topic * Message is unclear 	* Not Adequate
Sources	Sources are cited and are used critically	Sources are cited and some are used critically	Some sources are missing	Sources are not cited	Sources are not at all cited
Neatness	Typed; Clean; Neatly bound in a report cover; illustrations provided	Legible writing, well-formed characters; Clean and neatly bound in a report cover	Legible writing, some ill-formed letters, print too small or too large; papers stapled together	Illegible writing; loose pages	Same as below standard
Timeliness	Report on time	Report one class period late	Report two class periods late	Report more than one week late	Report more than 10 days late

Syllabus

Programme Code:		M.Sc. PHY		Programme Title:	Mast	er of Physics
		23PPS101		Title	Batch:	2023-2025
Course Code:	25885101			CC I:	Semester:	Ι
Lecture Hrs./Week or Practical Hrs./Week	5	Tutorial Hrs./Sem.	-	Mathematical Physics	Credits:	5

To learn the mathematical concepts and tools required to solve the problems related to physics and to develop the skills essential for solving advanced problems in theoretical physics

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the basic elements of complex analysis, important differential and integral theorems, Fourier and Laplace transforms.	K1 / K2
CO2	Apply the mathematical skills to solve quantitative problems related to the applications of physics	К3
CO3	Analyze the problems in various domains of physics to choose appropriate method of special differential equations and special integrals	K4
CO4	Evaluate the complicated differentials and integrals using special functions such as Legendre, Bessel, Hermite, beta and gamma functions	K5
CO5	Formulating different mathematical methods and physical laws in terms of complex analysis and tensors with coordinate transforms	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	Н	-	-	Н	-	Н	-
CO2	М	Н	-	-	Н	-	Н	-
CO3	-	М	Н	М	М	-	М	М
CO4	-	-	L	Н	-	L	-	Н
CO5	-	-	-	М	-	М	-	Н

H – High; M – Medium; L – Low

Mathematical Physics

Units	Content	Hrs
Unit I	SPECIAL FUNCTIONS Legendre differential equations and Legendre functions - Generating function of Legendre polynomial - Orthogonal properties of Legendre's polynomials - Recurrence formulae for $Pn(x)$ - Bessel's differential equations: Bessel's functions of first kind - To solve $J1/2(x)$, $J-1/2(x)$, $J3/2(x)$ and $J-3/2(x)$ - Recurrence formulae for $Jn(x)$ - Generating function of $Jn(x)$ - Hermite differential equation & Hermite polynomials - Generating function of Hermite polynomials - Recurrence formulae for Hermite polynomials	15
Unit II	COMPLEX VARIABLES Analytic function: definition – The necessary and sufficient conditions for f(z) to be analytic: Cauchy Riemann Differential equations in polar form – Cauchy's integral theorem(Cauchy proof only) - Cauchy's integral formula - Taylor's series and Laurent's series - Singularities of an analytic function - Residues and their evaluation - Cauchy Residue theorem - Evaluation of definite integrals of certain important real integrals	15
Unit III	PARTIAL DIFFERENTIAL EQUATIONS Solution of Laplace's equation in Cartesian coordinates - Examples of Two dimensional steady flow of heat - Solution of Laplace's equation in two dimensional cylindrical coordinates – Problems - Solution of Laplace's equation in Spherical polar coordinates – Problems – Diffusion equation or Fourier equation of heat flow - Solution of heat flow equation –Variable linear flow- Problems	15
Unit IV	FOURIER INTEGRAL AND TRANSFORMATIONS Fourier Integral– Fourier's Transform: Infinite Fourier sine and cosine transforms - Properties of Fourier's Transform: Addition theorem, Similarity theorem, Shifting property, Modulation theorem- Convolution theorem and Parseval's theorem – Problems – Finite Fourier sine and cosine transforms - Problems – Simple application of Fourier transform: Evaluation of integrals	15
Unit V	TENSORS, BETA AND GAMMA FUNCTIONS n- dimensional space- Superscripts and Subscripts- Transformation of co-ordinates – Indicial convention-Summation convention – Dummy and real indices -Kronecker delta symbol -Generalised Kronecker delta - Scalars, contravariant and covariant vectors- Tensors of higher ranks - Algebraic operations of tensors – Quotient law - Symmetric and skew symmetric tensors - Beta and Gamma functions: Symmetry property of beta function – Evaluation of beta function – Transformation of beta function - Evaluation of Gamma function - Transformation of Gamma function – Relation between beta and gamma function.	15
	Total Contact Hrs	75

• Italic font denotes self-study

Pedagogy and Assessment Methods:

Seminar, Power Point Presentation, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Satyaprakash	Mathematical Physics with classical mechanics	S Chand and Co Ltd, New Delhi	2013

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Gupta B.D.	Mathematical Physics	Vikas publication house, Noida, U.P	2001 (Reprint)
2	Louis A.Pipes & Lawrence R. Harvill	Applied Mathematics For Engineers & Physicsts	McGraw Hill Ltd, New Delhi.	1970
3	H.K. Dass& Rama Verma	Mathematical Physics	PHI Learning Pvt. Ltd., New Delhi	2016
4	Related online contents [MOOC, SWAYAM, NPTEL, Websites etc]https://nptel.ac.in/courses/115/106/115106086/https://nptel.ac.in/courses/115/103/115103036/https://nptel.ac.in/courses/115/106/115106086/https://nptel.ac.in/courses/115/103/115103036/			

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name:	Name:
Dr. K. Somasundaram	Dr.T.E.Manjulavalli	Mr.K.Srinivasan	Dr. R. Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc.	РНҮ	Programme Title:	Master o	of Physics	
Course Code:	23PPS	5102	Title CC II: Classical	Batch: Semester:	2023 – 2025 I	
Lecture Hrs./Week or Practical Hrs./Week	5	Tutorial Hrs./Sem.	-	Mechanics	Credits:	4

To gain knowledge and understanding of lagrangian and Hamiltonian formulations of mechanics and to applythem to simple systems.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the relation between symmetry operation and classical conservation laws	K1
CO2	Get clear understanding of recent intricate theories of modern physics	K2
CO3	Tackle the new problem and apply the techniques of classical mechanics to far-flung reaches of science	К3
CO4	Provide smooth transition from traditional techniques to rapidly growing area of non-linear dynamics and chaos	K4
CO5	Learn many concepts and key points which will also be used in other subjects of physics.	K5

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	Н	Н	Н	Н	Н	Н	М
CO2	Н	М	Н	Н	М	Μ	Н	Н
CO3	М	Н	Н	М	Н	Μ	Н	Н
CO4	Н	Н	Н	М	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Μ	Н	Н

H-High;M- Medium;L-Low

Classical Mechanics

Units	Content	Hrs
Unit I	LAGRANGIAN FORMALISM Constraints and Degrees of freedom - Generalized coordinates: Generalized Displacement, Velocity, Acceleration, Momentum, Force & Potential - Variational techniques and Euler's Lagrange differential equation - Hamilton's Variational principle - Lagrange's equation of motion from Hamilton's principle - Deduction of Newton's second law of motion from Hamilton's principle - Applications of Lagrange's equation of motion: Linear harmonic oscillator - Simple pendulum - Isotropic oscillator – Particle moving under central force - Atwood's machine - Double pendulum - <i>Conservation</i> <i>theorems: Cyclic coordinates - Conservation of Linear momentum - Conservation of</i> <i>energy</i>	15
Unit II	HAMILTONIAN FORMALISM Phase space - Hamiltonian - Hamilton's canonical equation of motion -Significance of H - Deduction of canonical equation from Variational principle -Applications of Hamilton's equation of motion: Simple pendulum - Particle in a central field of force – Hamiltonian of a Charged particle in an electromagnetic field - Principle of least action and proof - Canonical transformations - Generating function and different forms – Poisson brackets: Definition - Equation of motion in Poisson bracket form - Angular momentum and Poisson bracket relations	15
Unit III	HAMILTON JACOBI THEORY Hamilton Jacobi method: H J partial differential equation - Solution of H J equation – Discussion on Hamilton's principle function - Solution of harmonic oscillator problem by H J method - Particle falling freely - H J equation for Hamilton's characteristic function - Kepler's problem solution by H J method - Action and Angle variables – Solution of harmonic oscillator problem by action angle variable method	15
UnitIV	RIGID BODY DYNAMICS Generalised co ordinates for rigid body motion – Euler's theorem – Euler's angles - Rotational kinetic energy of a rigid body - Equations of motion for a rigid body_ Euler's equations : Lagrange's method – Equation of motion about fixed axis - The motion ofsymmetric top under the action of gravity- Force free motion of symmetrical rigid body.	15
Unit V	MECHANICS OF SMALL OSCILLATIONS Stable & Unstable equilibrium –Two coupled oscillators-Formulation of the problem : Lagrange's equations for small oscillations - Properties of T,V and ω - Normal coordinates & normal frequencies of vibration - Systems with few degrees of freedom :Free vibrations of linear triatomic molecule	15
	Total Contact Hrs	75

• Italic font denotes self-study

Pedagogy and Assessment Methods:

Seminar, PowerPoint Presentation, Chalkandtalk, Quiz, Assignments, GroupTask.

TextBook

S.NO	AUTHOR	TITLE OF THEBOOK	PUBLISHERS \EDITION	YEAR OFPUBLICATI ON
1	Herbert Goldstein	Classical Mechanics	Addison Wesley Publishing Company	2001
2	Gupta S.L. Kumar V. Sharma R.C.	Classical Mechanics	PragatiPrakashan, Meeret	2010
3	Laxmanan M. Rajasekar S.	Nonlinear Dynamics	Springer - Verlag, Distributors: Prism Books Pvt Ltd, Berlin	1978

S.NO	AUTHOR	TITLE OF THEBOOK	PUBLISHERS \EDITION	YEAR OFPUBLICATI ON
1	Rana N.C. Joag P.S.	Classical Mechanics	Tata McGraw Hill, New Delhi	2001
2	https://nptel.ac.in/c	ontents [MOOC, SWAYA courses/122/106/122106027 u/courses/physics/8-09-class	<u>1/</u>	

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name:	Name:
Ms.N.Revathi	Dr.T.E.Manjulavalli	Mr.K.Srinivasan	Dr. R. Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master	of Physics
Course Code:	23PPS	5103	Title CC III:	Batch: Semester:	2023 – 2025 I	
Lecture Hrs./Week or Practical Hrs./Week	5	Tutorial Hrs./Sem.	-	Statistical Mechanics	Credits:	5

To recognize the properties of macroscopic and microscopic systems with the knowledge of the properties of individual particles using classical and quantum statistics

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the connection between concepts of statistical mechanics and thermodynamics	K1 / K2
CO2	Apply the theories of statistical mechanics to the calculation of macroscopic properties resulting from microscopic models	К3
CO3	Identify the strength and limitations of the models used and be able to compare different microscopic models	K4
CO4	Attain an analytic ability to solve problems relevant to statistical mechanics	K5
CO5	Formulate statistical models of more realistic systems in statistical physics and other core areas of physics	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	Н	-	-	Н	-	Н	-
CO2	М	Н	-	-	Н	-	Н	L
CO3	М	М	Н	L	М	-	М	М
CO4	-	-	L	М	-	L	L	Н
CO5	-	-	-	М	-	М	-	Н

H - High; M - Medium; L - Low

Statistical Mechanics

Units	Content	Hrs
Unit I	CONCEPTS OF STATISTICAL MECHANICS Phase space – Number of phase cells in given energy range of harmonic oscillator and three dimensional free particle - Volume in Phase space – Division of phase space into cells - Ensembles – Micro, Canonical ensemble – Canonical ensemble – Grand canonical – ensemble – Uses of ensemble – Liouvilles theorem - Postulate of equal a priori probability – Statistical equilibrium – Thermal equilibrium - Mechanical equilibrium – Particle equilibrium – Thermo dynamical quantities : entropy – enthalpy – Helmholtz free energy – Gibb's free energy - Chemical potential - Connection between statistical and thermo dynamical quantities	
Unit II	CLASSICAL STATISTICS Microstates and Macro states –Classical Maxwell Boltzmann distribution law – Most probable speed , Mean speed , Mean square speed ,Root mean square speed - Principle of equipartition energy – Gibbs paradox – Partition function and its correlation with thermodynamic quantities. Partition function and their properties, effect of shifting zero level of energy on partition function, mean energy, specific heat, entropy -comparison of ensemble – <i>Equipartition theorem from canonical distribution</i>	15
Unit III	$\begin{array}{l} \textbf{QUANTUM STATISTICS} \\ Transition from classical statistical Mechanics to Quantum Statistical Mechanics – Indistinguishability in quantum statistics – Statistical weight or a priori probability – Matrices – The density matrix – Postulates – Condition for statistical equilibrium – Identical particles and symmetry requirement – Bose - Einstein distribution law – Fermi – Dirac distribution law - Maxwell Boltzmann statistics - Evaluation of Constant \alpha & \beta - Results of all three statistics$	15
Unit IV	APPLICATION OF QUANTUM STATISTICS Photon gas - Black body radiation and Planck radiation – Specific heat of solids – Einstein theory – Debye theory – Bose Einstein condensation – Liquid Helium - Electron Gas – Free electron model and electronic emission – Pauli's theory of Para magnetism – White dwarfs	15
Unit V	TRANSPORT PROPERTIES Brownian movement – Onsager solutions – Fluctuations : Energy, Pressure volume, enthalpy – phase transition – First and second order phase transitions - Ising model – Bragg William approximation – One dimensional Ising model	15
	Total Contact Hrs	75

• Italic font denotes self-study

Pedagogy and Assessment Methods:

Seminar, Power Point Presentation, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Gupta, Kumar	Statistical Mechanics	Pragati Prakasahan Meerut	2003

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION	
1	Agarwal K. Eisner	Statistical Mechanics	New Age International Publishers, New Delhi	1998	
2	B.B. Laud	Fundamentals of Statistical Mechanics	New age International Publishers	2011	
3	Related online contents [MOOC, SWAYAM, NPTEL, Websites etc] <u>https://nptel.ac.in/courses/115/106/115106111/</u> <u>https://ocw.mit.edu/courses/physics/8-333-statistical-mechanics-i-statistical-mechanics-of-particles-fall-2013/lecture-notes/</u>				

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name:	Name:
Mr.T.Ponraj	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Dr. R. Manicka Chezian
		Signature:	
Signature:	Signature:		Signature:

Programme Code:	M.Sc. PHY		Programme Title:	Master	of Science	
		23PPS1E1		Title	Batch:	2023 - 2025
Course Code:	25895161			CC Elective I -	Semester:	Ι
Lecture Hrs./Week	5	Tutorial Hrs./Sem.	-	Applied Electronics	Credits:	5

To understand the action of semiconductor devices and develop the concepts in the frontier areas of applied electronics

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Acquire the basic knowledge in semiconductor devices and their applications	K1/K2
CO2	Apply the electronic principles to develop circuits for different outputs	К3
CO3	Analyze the electronic circuit systems and trouble shoot them for proper working	K4
CO4	Explain the application of circuit configurations and identify type of electronic component used for proper operation of circuits	K5
CO5	Design oscillators and multi-vibrators with the acquired knowledge on electronics	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	М	М	L	L	L	Н	М
CO2	Н	Н	L	Н	Н	М	Н	Н
CO3	Н	Н	L	М	М	М	М	Н
CO4	Н	Н	М	Н	Н	М	Н	Н
CO5	Н	Н	L	Н	Н	Н	М	М

H – High; M – Medium; L – Low

Applied Electronics

Units	Content	Hrs
Unit I	SEMICONDUCTOR DEVICES AND AMPLIFIERS Semiconductor: Basic ideas- CE transistor characteristics - JFET, Depletion MOSFET and Enhancement MOSFET - Characteristics - UJT and Relaxation Oscillator - SCR & SCR as a switch - Principle of amplification - Classification of amplifiers - Common base, Common emitter RC coupled amplifiers and Frequency response - Hybrid parameters and Small signal analysis - Emitter follower - <i>Concept of Power amplification & Classification of Power</i> <i>amplifiers</i> - Transformer coupled class A Power amplifier –Calculation of Efficiency - Class B Push pull amplifier - Complementary symmetry Push pull amplifier – Efficiency calculation - Biasing of FET amplifier - Common source FET amplifier - Common drain FET amplifier.	15
Unit II	FEEDBACK AMPLIFIER & OSCILLATORS Concept of Feedback - Negative feedback - Forms of negative feedback - <i>Effect</i> of negative feedback on bandwidth, distortion, noise and stability - Positive feedback - Barkhausen criterion - Generation of sinusoidal waves by a tuned LC circuit - Classification of oscillators - Hartley oscillator - Colpitts oscillator - Phase shift oscillator- Frequency calculation - Astable, Monostable and Bistable Multivibrators.	15
Unit III	OPERATIONAL AMPLIFIER-I Ideal Op Amp - Inverting Op Amp - Non inverting Op Amp - Voltage follower circuits Voltage to current converter - Sample and hold circuit Logarithmic amplifier-Constant current source using Op Amp- Realization of constant – current source – Comparators – window detector circuits – Schmitt Trigger -	15
Unit IV	OPERATIONAL AMPLIFIER-II Differential amplifier – Common mode and Differential mode – Common Mode Rejection Ratio(CMRR)- Differential Amplifier circuits – Common Mode operation – Differential Mode operation –Characteristics of the nonideal Operational amplifier – Frequency compensation-Practical Operational amplifier.	15
Unit V	RADIOMETRY AND PHOTOMETRYRadiometric and photometric flux, Efficacy ,Radiometric and photometricEnergy, Radiometric and photometric intensity (Definition only) – CommonRadiant Profiles – Optical transfer function and Numerical aperture DISPLAY DEVICES & DETECTORS Light Emitting Diode: Construction – Electrical and Optical Characteristics –Electroluminescent Source: Electroluminescent lighting panel and Display –Classifications and Characteristics of radiation detectors – Detector Noise –Thermal Detectors: Thermocouple- Pyroelectric detectors – External Photoeffect Photoelectric Detectors: Photoconductors	15
	Total Contact Hrs	75

• Italic font denotes self-study

Pedagogy and Assessment Methods

Chalk and Talk lectures, Group Discussion, Seminar, Interaction, power point presentation

Text Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Norman Lurch	Fundamentals Of Electronics	John Wiley & Sons, New York	1981
2	Swaminathan Mathu	Electronics Circuits And Systems	Howard W.Sams & Co	1985
3	Endel Uiga	Optoelectronics	Prentice Hall International Editions, New York	1995

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION		
1	Salivahanan S. Suresh kumar N. Vallavaraj A.	Electronic Devices & Circuits	Tata McGraw Hill Publishing Company Limited, New Delhi	2003		
2	Robert F.Coughilin	Pearson Education Inc, New Delhi	Operational Amplifiers & Linear Integrated Circuits	2001		
3	Chin Lin Chen	Elements Of Optoelectronics And Fiber Optics	A Time Mirror Higher ducation Group, Inc. company	1996		
4	Wilson J. Hawkes J.F.B.	Optoelectronics – An Introduction	Prentice Hall, New Delhi	1992		
5	Related online contents [MOOC, SWAYAM, NPTEL, Websites etc] https://nptel.ac.in/courses/122/106/122106025/					

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.A.Sureshkumar	Name: Dr.T.E.Manjulavalli	Name: Mr. K.Srinivasan	Name: Dr. R. Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Maste	er of Science
Course Code:	23PPS204			TitleCC IV:	Batch: Semester:	2023 – 2025 II
Lecture Hrs./Week	5	Tutorial Hrs./Sem.	Quantum Mechanics I	Credits:	5	

To understand the basic concepts and formalisms in Quantum mechanics and solve eigen value problems by applying approximation methods

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the core concepts and abstract formalism of quantum mechanics and the mathematical tools required to formulate problems	K1/K2
CO2	Apply the most appropriate approximation methods to obtain solution for 1D,3D Eigen value problem	K3
CO3	Analyze the role of various quantum mechanical phenomena e.g. angular momentum, scattering theory in modern physics and technology, Compare the properties, establish the relations between them, Interpret and validate the results	K4
CO4	Assimilate all the components of course and select a correct method to find solution for various problems of atomic and molecular dimensions	K5
CO5	Incorporate relevant tools and methodologies of the course to exhibit the skills to test the ideas and solve complexities	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	М	Н	Н	L	L	Н	М
CO2	Н	Н	Н	М	М	М	Н	М
CO3	Н	Н	Н	М	М	М	М	Н
CO4	Н	Н	Н	Н	Н	М	М	Н
CO5	Н	Н	Н	Н	Н	Н	М	М

H - High; M - Medium; L - Low

Quantum Mechanics I

Units	Content	Hrs
Unit I	BASIC AND GENERAL FORMALISM OF QUANTUM MECHANICS Schrodinger Equation: Generalization to three dimension, operator correspondence - Max Born physical interpretation of the wave function - Conservation of probability- Ehrenfest theorem - Linear vector space - basis function - Hilbert space - Eigen function and Eigen values - Self Adjoint operator - Schwartz inequality - Operators - Completeness and Normalization of eigenfunctions - Gram Schmidt orthogonalisation procedure - Postulates of Quantum mechanics - Matrix representation of an operator - Column representation of wave function - Normalization and orthogonality of wave function in Matrix form - Change of basis, Similarity and Unitary transformation - Dirac's Notation- Equations of Motion; Schrodinger, Heisenberg and Dirac representation.	15
Unit II	APPLICATIONS OF QUANTUM MECHANICS Schrodinger equation in Cartesian and Polar coordinates= Stationary states - one dimensional Systems potential step - potential barrier and well - concept of tunneling - linear harmonic oscillator using differential equation approach - operator approach - Infinite cubical box - concept of degeneracies- The rigid rotator with free axis -Eigen function for the rotator - Rigid rotator in a fixed plane - Three dimensional harmonic oscillator - The hydrogen atom: Equations and Solutions of angular and Radial part(φ , θ and R).	15
Unit III	ANGULAR MOMENTUM AND IDENTICAL PARTICLES Algebra of the angular momentum vector components - Ladder operators - Eigen value spectrum and Matrix representation - Angular momentum operator- Addition of two angular momenta and CG coefficients - Application to two electron systems - Parity operator, Symmetric and Antisymmetric wave functions - <i>Pauli's exclusion principle</i> .	15
Unit IV	TIME INDEPENDENT PERTURBATION THEORY Perturbation theory for a system with Non-degenerate energy Levels - effect of electric field on the ground state of Hydrogen (Stark effects in Hydrogen) - <i>Ground state of Helium</i> - Degenerate energy levels - Effect of electric field on n = 2 state of Hydrogen - Variation method - The Hellmann Feynman theorem - Estimation of Ground state of Helium - WKB approximation - Connection Formula -Validity - <i>Alpha emission</i> .	15
Unit V	TIME DEPENDENT PERTURBATION Schrodinger equation and general solution – Propagator- Alteration of Hamiltonian, transitions and sudden approximation - Perturbation solution for transition amplitude - First order perturbation - Transition to continuum states: Fermi Golden rule - Scattering of a particle by a potential	15
	Total Contact Hrs	75

Pedagogy and Assessment Methods

Chalk and Talk lectures, Group Discussion, Seminar, Interaction, power point presentation

Text Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1				
2	Nouredine Zettili,	Quantum Mechanics,	John wiley and Sons Ltd,	2009
3	Aruldhas	Quantum Mechanics	Prentice Hall India Company Pvt Ltd, New Delhi	2014

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION			
1	Mathews, Venkatesan,	A Text Book of Quantum Mechanics	Tata McGraw Hill Company Ltd, New Delhi.	2016			
2	Atkins P.W.	Quantum Mechanics	Oxford University Press, Oxford	1983			
3	Gupta, Kumar, Sharma	Quantum Mechanics	Pragathi Prakash Publications,Meerut	2018			
4	4 Related online contents [MOOC, SWAYAM, NPTEL, Websites etc] 4 http://nptel.ac.in/courses/122/106/122106034/ http://nptel.ac.in/courses/115/103/115103104/ http://nptel.ac.in/courses/115/101/115101107/						

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.T.E.Manjulavalli	Name: Dr.T.E.Manjulavalli	Name: Mr. K.Srinivasan	Name: Dr. R. Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master o	of Physics
Course Code:	22000	2205	Title	Batch:	2023 - 2025	
	23PPS205			CC V:	Semester:	II
Lecture Hrs./Week or Practical Hrs./Week	5	Tutorial Hrs./Sem.	-	Electromagnetic theory & Electrodynamics	Credits:	5

To develop the basic knowledge about electromagnetic field and plasma physics

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Recollect the basic ideas about electric, magnetic fields	K1
CO2	Understand the applications of electromagnetic field	K2
CO3	Analyze incompletion of Ampere's law and completion of Maxwell's equation	K4
CO4	Enhanced skill in solving problems by applying electromagnetic field expressions	K5
CO5	Promote fundamental ideas of the unified electromagnetic theory which is present everywhere	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Μ	Н	Н	М	Н	Μ	Н	М
CO2	Н	Н	Н	М	Н	Н	Н	М
CO3	М	Н	Н	М	Н	Μ	Н	М
CO4	М	М	Н	М	Н	Н	Н	М
CO5	Н	Н	L	Н	Н	Μ	Н	М

H-High; M-Medium; L-Low

Electromagnetictheory & Electrodynamics

Units	Content	Hrs			
	ELECTROSTATICS				
	Concept of charge - Coulomb's law - Gauss law - Multipole expansion of charge				
	distribution - Dielectric and its polarization - Electric displacement D - Polarization of	15			
Unit I	non-polar molecules - Lorentz equation for molecular field - Claussius Mossotti relation -	15			
	Polarisation of polar molecules-Langevin equation-Debye relation and molecular				
	structure - Boundary conditions - Image method				
	MAGNETOSTATICS				
	Current density - Ampere's law of force - Biot Savart law - Ampere's circuital law -				
	Magnetic scalar and vector potential - Application to magnetic dipole				
	FIELD EQUATION AND CONSERVATION LAWS				
TT •4 TT	Equation of continuity - Displacement current \mathbf{D} - Maxwell's equations - Energy in				
Unit II	electromagnetic field - Poynting vector - Momentum in electromagnetic fields –	15			
	Electromagnetic potential A and φ - Maxwell's equations in terms of electromagnetic	1.5			
	potential - Concept of Gauge - Lorentz Gauge - Coulomb Gauge - <i>Retarded potential</i> –				
	Lienard Wiechart potentials				
	PLANE ELECTROMAGNETIC WAVES PROPAGATION EM waves in free space –Propagation of E.M waves in Isotropic dielectrics Propagation				
Unit III	of E.M waves in Anisotropic dielectrics - Propagation of E.M waves in conducting media	15			
	- Propagation of E.M waves in ionized media – The dynamic value of conductivity	10			
	INTERACTION OF E.M.W WITH MATTER ON MICROSCOPIC SCALE				
	Scattering and Scattering parameters- Scattering by a free electron (Thomson scattering)-				
Unit IV	Scattering by a bound electron (Rayleigh scattering)				
	INTERACTION OF E.M.W WITH MATTER ON MACROSCOPIC SCALE	15			
	Boundary conditions - Reflection and Refraction of EM waves - Fresnel's formula –				
	Brewster's law and polarization of E.M.W - Total internal reflection - Reflection from a				
	metallic surface - Propagation of EM waves between conducting planes				
	RELATIVISTIC ELECTRODYNAMICS 1				
	Four vectors and tensors - Transformation equations for ρ and J - Transformation				
Unit V	equation for A and φ - Electromagnetic field tensor - Transformation equation for E and				
	B - Covariance of Maxwell's equations : Four vector form & four tensor form –				
	Covariance and transformation law of Lorentz force				
	Total Contact Hrs	75			

• Italic font denotes self-study

Pedagogy and Assessment Methods:

Seminar, Power Point Presentation, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Chopra K.K. Agarwal G. C.	Electromagnetic Theory	K. Nath & Co, Meerut \ 5th edition	1989
2	Chen F.F.	Introduction To Plasma Physics And Controlled Fusion	Plenium press, Newyork \3rd edition	

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION				
1	David. J. Griffiths	Introduction To Electrodynamics Prentice Hall of Ind Private Ltd, New Delhi\ 2nd edition						
2	Gupta Kumar Singh	Electrodynamics	Pragati Prakasam, Meerut\ 13th edition	1998				
3	Sen S. N	Plasma Physics	Pragati Prakasam, Meerut \3rd edition	1999				
4	Related online contents [MOOC, SWAYAM, NPTEL, Websites etc] https://nptel.ac.in/courses/122/106/122106034/ https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2016/lecture-notes/							

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name:	Name: Dr. R.
Ms.N.Revathi	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Manicka
Signature:	Signature:	Signature:	Chezian
			Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master of Science		
Course Code:	23PPS	206		Title CC VI:	Batch: Semester:	2023-2025 II	
Lecture Hrs./Week or Practical Hrs./Week	5	Tutorial Hrs./Sem.	-	Condensed Matter Physics	Credits:	5	

To provide coherent perspective of the physical concepts and theories related with the characterization of materials

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the depth information of crystalstructures	K2
CO2	Apply knowledge of crystallographic techniques to elucidate the various properties in thesolid-state physics	К3
CO3	Analyze the different properties like electric, magnetic and thermal and develop the skills for research	K4
CO4	Evaluate the possibility of superconductors in industry and medical applications	K5
CO5	Create new materials based on a fundamental understanding of their properties	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	Μ	Μ	М	-	-	Н	-
CO2	М	Н	М	-	Н	L	М	L
CO3	L	М	Н	М	М	L	Н	М
CO4	L	М	Н	М	М	М	L	М
CO5	-	L	М	М	Н	Н	L	Н

H-High; M-Medium; L-Low

Condensed Matter Physics

GEOMETRY OF CRYSTALS: Periodicity in crystal – choice of unite cell – Wigner-Seitz unit cell- Number of lattice points per unit cell – Bravais lattice (2D and 3D), Rational features of a crystal and Miller Indices- Inter planar spacing –Density of atoms in a crystal plane – SC.BCC, FCC and HCP, other cubic structure, Ionic bonding, Bond dissociation of NaCl molecule, Evaluation of Madelung constant for NaCl structure, Covalent bond, Metallic bonding, Vanderwalls bonding, Reciprocal lattice to SC,BCC and FCC lattice, Properties of Reciprocal lattice, X-ray Diffraction [Experiment- Powder crystal method-X-ray diffraction – Interpretation of Braggs equation –Ewald's Construction Point defect, line defect, dislocation and color centers (Basic ideas only) LATTICE VIBRATIONS OF SOLIDS &THERMAL PROPERTES Dynamics of the chain of identical atoms- Dynamics of a diatomic Linear chain- Dynamics of identical atoms in three dimensions- Experimental measurements of dispersion relations – Anharmonicity and thermal expansion. Specific heat of solids - Classical model – Einstein model, Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process) FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (ID&3D), Density of states – Ferni Dirac statistics- Electronic specific heat – Electronic conductivity of metals, relaxation time and mean free path – Thermal unit III Unit III FRER ELECTRIC ND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Crystals – Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites.	nits	Content	Hrs					
 unit cell – Bravais lattice (2D and 3D), Rational features of a crystal and Miller Indices- Inter planar spacing –Density of atoms in a crystal plane – SC,BCC, FCC and HCP, other cubic structure, Ionic bonding, Bond dissociation of NaCl molecule, Evaluation of Madelung constant for NaCl structure, Covalent bond, Metallic bonding, Vanderwalls bonding, Reciprocal lattice to SC,BCC and FCC lattice, Properties of Reciprocal lattice, X-ray Diffraction Experiment-Powder crystal method-X-ray diffraction – Interpretation of Braggs equation –Ewald's ConstructionPoint defect, line defect, dislocation and color centers (Basic ideas only) LATTICE VIBRATIONS OF SOLIDS &THERMAL PROPERTIES Dynamics of the chain of identical atoms- Dynamics of a diatomic Linear chain-Dynamics of identical atoms in three dimensions. Experimental measurements of dispersion relations – Anharmonicity and thermal expansion. Specific heat of solids - Classical model – Einstein model, Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process) FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (1D&3D), Density of states – Thermal conductivity of metals, relaxation time and mean free path – Thermal conductivity of metals - Hall Effect-Bloch thereom – Kronig Penney model – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators. FERO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites. SUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting	G	GEOMETRY OF CRYSTALS:						
 planar spacing –Density of atoms in a crystal plane – SC,BCC, PCC and HCP, other cubic structure, Ionic bonding, Bond dissociation of NaCl molecule, Evaluation of Madelung constant for NaCl structure, Covalent bond, Metallic bonding, Vanderwalls bonding, Reciprocal lattice to SC,BCC and FCC lattice, Properties of Reciprocal lattice, X-ray Diffraction Experiment-Powder crystal method-X-ray diffraction – Interpretation of Braggs equation –Ewald's Construction Point defect, line defect, dislocation and color centers (Basic ideas only) LATTICE VIBRATIONS OF SOLIDS &THERMAL PROPERTIES Dynamics of the chain of identical atoms- Dynamics of a diatomic Linear chain- Dynamics of identical atoms in three dimensions- Experimental measurements of dispersion relations – Anharmonicity and thermal expansion. Specific heat of solids - Classical model – Einstein model, Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process) FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (1D&3D), Density of states – Fermi Dirac statistics- Electronic specific heat – Electrical resistivity of metals. relaxation time and mean free path – Thermal conductivity and electrical resistivity of metals. relaxation time and mean free path – Thermal conductors and Insulators. FERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of crystals – Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites. SUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetrati	Р	Periodicity in crystal – choice of unite cell – Wigner-Seitz unit cell- Number of lattice points per						
Unit 1 structure, Ionic bonding, Bond dissociation of NaCl molecule, Evaluation of Madelung constant for NaCl structure, Covalent bond, Metallic bonding, Vanderwalls bonding, Reciprocal lattice to SC, BCC and FCC lattice, Properties of Reciprocal lattice, X-ray Diffraction [Experiment- Powder crystal method-X-ray diffraction – Interpretation of Braggs equation –Ewald's Construction Point defect, line defect, dislocation and color centers (Basic ideas only) Unit 11 LATTICE VIBRATIONS OF SOLIDS &THERMAL PROPERTIES Dynamics of the chain of identical atoms- Dynamics of a diatomic Linear chain- Dynamics of identical atoms in three dimensions- Experimental measurements of dispersion relations – Anharmonicity and thermal expansion. Specific heat of solids- Classical model – Einstein model, Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process) FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (ID&3D). Density of states –Fermi Dirac statistics- Electronic specific heat – Electronic conductivity of metals - Hall Effect-Bloch thereom – Kronig Penney model – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators. Unit 11 FERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Rochelle salt and BaTiO ₃ - Ferroelectric domain – Piezo- Pyro and Ferri electric properties of Crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites. Unit V Effect of magnetic field, Critical current – Meissner effect – Th	u	init cell – Bravais lattice (2D and 3D), Rational features of a crystal and Miller Indices- Inter						
Unit I for NaCl structure, Covalent bond, Metallic bonding, Vanderwalls bonding, Reciprocal lattice to SC,BCC and FCC lattice, Properties of Reciprocal lattice, X-ray Diffraction [Experiment- Powder crystal method-X-ray diffraction – Interpretation of Braggs equation –Ewald's Construction Point defect, line defect, dislocation and color centers (Basic ideas only) LATTICE VIBRATIONS OF SOLIDS &THERMAL PROPERTIES Dynamics of the chain of identical atoms- Dynamics of a diatomic Linear chain- Dynamics of identical atoms in three dimensions- Experimental measurements of dispersion relations – Anharmonicity and thermal expansion. Specific heat of solids - Classical model – Einstein model, Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process) FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (1D&3D), Density of states –Fermi Dirac statistics- Electronic specific heat – Electronic conductivity of metals, relaxation time and mean free path – Thermal conductivity and electrical resistivity of metals, relaxation time and mean free path – Thermal conductors, semiconductors and Insulators. FERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites. Unit II SUPERCONDUCTORS Effect of magnetic field, Criti	p	planar spacing –Density of atoms in a crystal plane – SC, BCC, FCC and HCP, other cubic						
 Information of the content of the second seco	st st	structure, Ionic bonding, Bond dissociation of NaCl molecule, Evaluation of Madelung constant						
 rystal method-X-ray diffraction – Interpretation of Braggs equation –Ewald's Construction Point defect, line defect, dislocation and color centers (Basic ideas only) LATTICE VIBRATIONS OF SOLIDS &THERMAL PROPERTIES Dynamics of the chain of identical atoms- Dynamics of a diatomic Linear chain- Dynamics of identical atoms in three dimensions- Experimental measurements of dispersion relations – Anharmonicity and thermal expansion. Specific heat of solids- Classical model – Einstein model, Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process) FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (ID&3D), Density of states – Fermi Dirac statistics- Electronic specific heat – Electronic conductivity of metals, relaxation time and mean free path – Thermal conductivy and electrical resistivity of metals - Hall Effect-Bloch thereom – Kronig Penney model – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators. FERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism of superconducting transitions – origin of energy gap – isotope effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors 	ut i fo	or NaCl structure, Covalent bond, Metallic bonding, Vanderwalls bonding, Reciprocal lattice to	15					
 Point defect, line defect, dislocation and color centers (Basic ideas only) LATTICE VIBRATIONS OF SOLIDS & THERMAL PROPERTIES Dynamics of the chain of identical atoms- Dynamics of a diatomic Linear chain- Dynamics of identical atoms in three dimensions- Experimental measurements of dispersion relations – Anharmonicity and thermal expansion. Specific heat of solids- Classical model – Einstein model, Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process) FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (1D&&3D), Density of states – Fermi Dirac statistics- Electronic specific heat – Electronic conductivity of metals, relaxation time and mean free path – Thermal conductivty and electrical resistivity of metals - Hall Effect-Bloch thereom – Kronig Penney model – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators. Ferroelectric crystals – Properties of Rochelle salt and BaTiO₃ - Ferroelectric domain – Piezo- Pyro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites. Unit IV Unit V 	crystal method-X-ray diffraction – Interpretation of Braggs equation –Ewald's Construction							
Unit IILATTICE VIBRATIONS OF SOLIDS &THERMAL PROPERTIES Dynamics of the chain of identical atoms - Dynamics of a diatomic Linear chain- Dynamics of identical atoms in three dimensions- Experimental measurements of dispersion relations – Anharmonicity and thermal expansion. Specific heat of solids- Classical model – Einstein model, Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process)Unit IIIFREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (1D&3D), Density of states –Fermi Dirac statistics- Electronic conductivity and electrical resistivity of metals, relaxation time and mean free path – Thermal conductivy and electrical resistivity of metals, relaxation time and mean free path – Thermal conductors and Insulators.Unit IVFERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Rochelle salt and BaTiO ₃ - Ferroelectric domain – Piezo- Pyro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites.Unit IVSUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	C1	rystal method-X-ray diffraction – Interpretation of Braggs equation –Ewald's Construction						
 Unit II Dynamics of the chain of identical atoms- Dynamics of a diatomic Linear chain- Dynamics of identical atoms in three dimensions- Experimental measurements of dispersion relations – Anharmonicity and thermal expansion. Specific heat of solids- Classical model – Einstein model, Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process) FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (1D&3D), Density of states –Fermi Dirac statistics- Electronic specific heat – Electronic conductivity of metals, relaxation time and mean free path – Thermal conductivy and electrical resistivity of metals - Hall Effect-Bloch thereom – Kronig Penney model – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators. FERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Rochelle salt and BaTiO₃ - Ferroelectric domain – Piezo-Piro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Perrites. Unit Vi Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors 	P	Point defect, line defect, dislocation and color centers (Basic ideas only)						
Unit IIidentical atoms in three dimensions- Experimental measurements of dispersion relations – Anharmonicity and thermal expansion. Specific heat of solids- Classical model – Einstein model, Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process)Image: Image: I	L	LATTICE VIBRATIONS OF SOLIDS & THERMAL PROPERTIES						
Unit IIAnharmonicity and thermal expansion. Specific heat of solids- Classical model – Einstein model, Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process)FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (1D&3D), Density of states – Fermi Dirac statistics- Electronic specific heat – Electronic conductivity of metals, relaxation time and mean free path – Thermal conducitivty and electrical resistivity of metals - Hall Effect-Bloch thereom – Kronig Penney model – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators.Unit IIIFERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Rochelle salt and BaTiO ₃ - Ferroelectric domain – Piezo- Pyro and Ferri electric properties of crystals – Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites.Unit IVSUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	D	Dynamics of the chain of identical atoms- Dynamics of a diatomic Linear chain- Dynamics of						
Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to electrons – Thermal resistance of solids (Umklapp Process)FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (1D&3D), Density of states –Fermi Dirac statistics- Electronic specific heat – Electronic conductivity of metals, relaxation time and mean free path – Thermal conducitivty and electrical resistivity of metals - Hall Effect-Bloch thereom – Kronig Penney model – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators.Unit IIIFERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Rochelle salt and BaTiO ₃ - Ferroelectric domain – Piezo- Pyro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites.Unit IVSUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	it II ^{ić}	dentical atoms in three dimensions- Experimental measurements of dispersion relations -	15					
electrons – Thermal resistance of solids (Umklapp Process) FREE ELECTRON THEORY AND BAND THEORY OF SOLIDS Electron moving in a potential well (1D&3D), Density of states –Fermi Dirac statistics- Electronic specific heat – Electronic conductivity of metals, relaxation time and mean free path – Thermal conducitivity and electrical resistivity of metals - Hall Effect-Bloch thereom – Kronig Penney model – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators. FERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Rochelle salt and BaTiO ₃ - Ferroelectric domain – Piezo-Pyro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites. Unit V Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors								
THEORY OF SOLIDSEREE ELECTRON THEORY AND BAND THEORY OF SOLIDSElectron moving in a potential well (1D&3D), Density of states –Fermi Dirac statistics- Electronicspecific heat – Electronic conductivity of metals, relaxation time and mean free path – Thermalconductivity and electrical resistivity of metals - Hall Effect-Bloch thereom – Kronig Penneymodel – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators.FERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDSFerroelectric crystals – Properties of Rochelle salt and BaTiO3 - Ferroelectric domain – Piezo- Pyro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites.SUPERCONDUCTORSEffect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	D	Density of states – Debye model – Thermal Conductivity of solids – Thermal conductivity due to						
Unit IIIElectron moving in a potential well (1D&3D), Density of states –Fermi Dirac statistics- Electronic specific heat – Electronic conductivity of metals, relaxation time and mean free path – Thermal conducitivy and electrical resistivity of metals - Hall Effect-Bloch thereom – Kronig Penney model – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators.Unit IVFERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Rochelle salt and BaTiO ₃ - Ferroelectric domain – Piezo- Pyro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites.Unit IVEffect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors								
Unit IIIspecific heat – Electronic conductivity of metals, relaxation time and mean free path – Thermal conducitivty and electrical resistivity of metals - Hall Effect-Bloch thereom – Kronig Penney model – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators.Unit IVFERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Rochelle salt and BaTiO ₃ - Ferroelectric domain – Piezo- Pyro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites.Unit VSUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors								
Unit IIIconducitivty and electrical resistivity of metals - Hall Effect-Bloch thereom - Kronig Penney model - Construction of Brillouin zones - Effective mass of an electron- Conductors, Semiconductors and Insulators.Unit IVFERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals - Properties of Rochelle salt and BaTiO ₃ - Ferroelectric domain - Piezo- Pyro and Ferri electric properties of crystals -Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism - Paramagnetism of free electrons - Weiss theory of ferromagnetism and Domain theory - Antiferromagnetism - Ferrimagnetism and Ferrites.Unit VSUPERCONDUCTORS Effect of magnetic field, Critical current - Meissner effect - Thermodynamics of superconducting transitions - origin of energy gap - isotope effect - London equation - London penetration depth - coherence length - Elements of BCS theory - flux quantization , Normal tunneling and Josephson effect - High temperature superconductors		U 1						
unit IV model – Construction of Brillouin zones – Effective mass of an electron- Conductors, Semiconductors and Insulators. FERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Rochelle salt and BaTiO ₃ - Ferroelectric domain – Piezo- Pyro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites. SUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	-		1 -					
Semiconductors and Insulators. FERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS Ferroelectric crystals – Properties of Rochelle salt and BaTiO ₃ - Ferroelectric domain – Piezo- Pyro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites. Unit V Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth - coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors			15					
Unit IVFerroelectric crystals – Properties of Rochelle salt and BaTiO3 - Ferroelectric domain – Piezo- Pyro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites.Unit VSUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors								
Unit IVPyro and Ferri electric properties of crystals –Langevin's classical theory of Diamagnetic and Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites.Unit VSUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	F	ERRO ELECTRIC AND MAGNETIC PROPERTIES OF SOLIDS						
Unit IV Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites. Unit V SUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	F	Ferroelectric crystals – Properties of Rochelle salt and BaTiO3 - Ferroelectric domain – Piezo-						
Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss theory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and Ferrites. SUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	P	yro and Ferri electric properties of crystals -Langevin's classical theory of Diamagnetic and	15					
Ferrites. SUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	P	Paramagnetic- Quantum theory of Paramagnetism – Paramagnetism of free electrons – Weiss	15					
SUPERCONDUCTORS Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting Unit V transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	th	heory of ferromagnetism and Domain theory – Antiferromagnetism – Ferrimagnetism and						
Unit VEffect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	F	³ errites.						
Unit V transitions – origin of energy gap – isotope effect – London equation – London penetration depth – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors	S	SUPERCONDUCTORS						
 – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors 	E	Effect of magnetic field, Critical current – Meissner effect – Thermodynamics of superconducting						
 – coherence length – Elements of BCS theory – flux quantization , Normal tunneling and Josephson effect – High temperature superconductors 	it V tr	ransitions – origin of energy gap – isotope effect – London equation – London penetration depth	15					
Total Contact Hrs								
	'''''	Total Contact Hrs	75					

• Italic font denotes self-study

Pedagogy and Assessment Methods:

Seminar, Power Point Presentation, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
	M.A. Wahab	Structure and	Narosa Publishing house- 3 rd	2006
1		Properties of	Edition	
		Materials (Unit I- V)		
	Kittel C.	Introduction to Solid	Revised 7th edition, John	2004
2		State Physics	Wiley & sons, New York,	
		(Unit-I)		
	Srivastava J.P	Elements of Solid	6th Edition, Prentice hall of	2001
3		State Physics	India, New Delhi,	
		(Unit-I)		
	Singhal R.L.	Solid State Physics	4th edition, Kedarnath	1989
4		(Unit-II)	Ramnath & Co, Meerut,	
	Pillai S.O.	Solid State Physics	4th Edition, New Age	2001
5		(Units III - V)	international (P) Ltd,	
			NewDelhi,	

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION				
	Richard Christman J.	Fundamentals of Solid	1st Edition, Library of	1998				
		State Physics	congress cataloguing.					
_	Decker A. J	Solid State Physics	1st Edition,	1963				
2			Macmillan & Co,					
			Madras					
	Related online contents [MOOC, SWAYAM, NPTI	EL, Websites etc]					
3	https://youtube.com/playlis	<u>st?list=PLFW6lRTa1g83H0</u>	GEihgwcy7KeTLUuBu3V	WF				
	https://youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrIO8kZl1D1Jp							
	https://youtube.com/playlist?list=PL090DAFDD7A36E27B							
	https://youtube.com/playlist?	list=PLgMDNELGJ1CYJka0 ⁷	71YfNgSgno3OES8Wt					

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Nama	Nome	Name:	Name:
Name: Dr.A.Suresh Kumar	Name: Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Dr. R. Manicka Chezian
		ivii . ix.oriiii vusuii	Dr. R. Mulleka Chezhan
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master of Science	
	23PPS2E3			Title	Batch:	2023 - 2025
Course Code:				CC Elective II:	Semester:	II
Lecture Hrs./Week	5	Tutorial Hrs./Sem.		Electronic Communications and Cyber security	Credits:	4

To develop the scientific skills in the Electronic Communication Systems and Cyber Security

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the various modulation techniques and the generation of microwaves and concepts of internet cyber security	K1/K2
CO2	Apply the basic physical concepts in analog, pulse and digital communication	K3
CO3	Implement the modulation techniques in the communication systems	K4
CO4	Evaluate the critical problems in communication systems	K5
CO5	Create the new digital transmission circuits used to modulate the signals	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	L	L	Н	М	L	Н	М
CO2	Н	М	L	М	Н	М	Н	Н
CO3	Н	М	L	М	Н	М	М	Н
CO4	Н	Н	М	Н	Н	М	L	Н
CO5	Н	Н	М	Н	Н	Н	М	М

H – High; M – Medium; L – Low

Electronic Communications and Cyber Security

Units	Content	Hrs
Unit I	ANALOG COMMUNICATION Power and energy in a signal-model of communication system- modulation and frequency translation - Amplitude Modulation: DSB-SC, SSB, VSB and conventional AM - Superhetrodyne AM receiver - Frequency Modulation: Modulation index, spectrum and bandwidth, direct generation and demodulation, superhetrodyne FM receiver - Noise: noise power spectral density, white, thermal and shot noise, equivalent noise temperature - Signal to noise ratio and noise figure	15
Unit II	PULSE MODULATION AND DIGITAL COMMUNICATION Pulse Modulation: Sampling theorem, informal justification, pulse amplitude modulation, time division multiplexing and pulse time modulation - Pulse code Modulation: Quantization Error, bandwidth, companding and delta modulation - Data Transmission: Base band and radio frequency transmission, FSK and PSK - Information Theory: Rate and measurement, channel capacity, Noisy and noiseless channel - <i>Shannon's theorem</i>	15
Unit III	MICROWAVE SYSTEMS Microwaves - Multicavity klystron - Reflex klystron - Magnetron - Travelling wave tube Radar and Television Elements of a Radar System-Radar Equation-Radar Performance Factors-Radar Transmitting Systems- Radar Antennas-Duplexers-Radar Receivers and Indicators-Pulsed Systems-Other Radar Systems- Colour TV Transmission and Reception	15
Unit IV	CYBER SECURITY AND CRYPTOGRAPHY Overview of Cyber Security: Confidentiality, Integrity and Availability. Threats: Malicious Software (Viruses, Trojans, Root kits, Worms, Botnets), Memory exploits (Buffer Overflow, Heap Overflow, Integer Overflow, Format String). Cryptography – Authentication, Password System – Windows Security.	15
Unit V	NETWORK SECURITY Network Security – Network Intrusion, Deduction and Prevention Systems, Firewalls. Software Security: Vulnerability Auditing, Penetration Testing, Sandboxing, Control Flow Integrity. Web Security: User Authentication. Legal and Ethical Issues: Cybercrime, Intellectual Property Rights, Copyright, Patent, Trade Secret, Hacking and Intrusion, Privacy, Identity Theft.	15
	Total Contact Hrs	75

• Italic font denotes self-study

Pedagogy and Assessment Methods

Chalk and Talk lectures, Group Discussion, Seminar, Interaction, power pointpresentation

Text Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Swaminathan Madhu	Electronic Circuits and Systems	H.W.Sams	1985
2	Kennedy, Davis	Electronic Communication Systems	Tata McGraw-Hill, New Delhi	2002
3	Dennis Roddy, John Coolen	Electronic Communications	Prentice-Hall of India, New Delhi	2000
4	Preston Gralla	How The Internet Works	Ziff- Davis Press	1996
5	Chwan-Hwa (John) Wu, J. David Irwin	Computer Networks & Cyber Security	CRC Press	2016

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION	
1	Louis E.Frenzel	Communication Electronics	Tata McGraw Hill Publishing Company Ltd, New Delhi	2001	
2	Wayne Tomasi	Electronic Communication Systems	Pearson Education Asia, New Delhi	1998	
3	Robert J. Schoenbeck	Electronic Communication Systems	Universal Book Stall	1992	
4	Wayne Tomasi, Vincent F.Alisouskas	Telecommunications	Printice- Hall International, New Delhi	1988	
4	Related online contents [MOOC, SWAYAM, NPTEL, Websites etc] https://nptel.ac.in/courses/117/101/117101051/ https://nptel.ac.in/courses/117/105/117105077/ https://nptel.ac.in/courses/106/106106129/ https://nptel.ac.in/courses/106/105/106105031/				

Designed by	Verified by HOD	Checked by CDC	Approved by COE
N	N		N
Name:	Name:	Name:	Name:
Dr.V.Saravanan	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Dr. R. Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master of Physics	
Course Code:	2200			Title	Batch:	2023 - 2025
	23PP	S2N1	Non Major Elective:	Semester:	II	
Lecture Hrs./Week or Practical Hrs./Week	1	Tutorial Hrs./Sem.	-	Non Conventional Energy Sources	Credits:	2

To study the basic concepts and applications of non conventional energy sources

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Recollect the applications of physics in real world	K1
CO2	Understand the principles of physics involving various natural and artificial process	K2
CO3	Recognize the need of non conventional energy sources	К3
CO4	Implement the basics laws of physics in the field of non conventional energy sources	К3
CO5	Analyze the efficiency of devices and instruments used in the production of energy	K4

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	М	L	-	-	-	М	-
CO2	Н	Н	-	Н	М	Μ	-	М
CO3	-	-	-	М	-	Μ	М	-
CO4	М	Н	L	Н	Н	-	-	М
CO5	-	-	М	Н	М	-	М	М

H-High; M-Medium; L-Low

Non Conventional Energy Sources

Units	Content	Hrs						
	SOLAR ENERGY							
Unit I	Solar radiation at the earth surface – Physical principles of the conversion of solar radiation into heat – Solar water heating – Solar cooking	3						
Unit II	II WIND ENERGY Wind energy conversion – Site selection consideration – Basic components of a wind							
	energy conversion – Site selection consideration – Basic components of a wind energy conversion system (WECS) – Advantages and disadvantages of WECS.							
Unit III	OCEAN ENERGY Ocean thermal energy conversion (OTEC) – Methods of ocean thermal energy power generation – Closed cycle OTEC system – Open cycle OTEC system.	3						
Unit IV	GEOTHERMAL ENERGY A typical geothermal field – Estimates of Geothermal power – Nature of Geothermal fields – Geothermal sources – Advantages and disadvantages of Geothermal energy – <i>Applications of Geothermal Energy</i> .	3						
Unit V	CHEMICAL ENERGY Fuel cells – Design, principle and operation of a fuel cell – Classification of fuel cells – Types of fuel cells – Advantages and disadvantages of fuel cell	3						
	Total Contact Hrs	15						

• Italic font denotes self-study

Pedagogy and Assessment Methods:

Seminar, Power Point Presentation, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	G.D.Rai	Non-Conventional Energy Sources	Khanna Publishers, Delhi	2002

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	G.D.Rai	Solar Energy Utilization	Khanna Publishers, Delhi \ 1st edition	1980
2	S.P. Sukhatme	Solar Energy Principles of Thermal Collection and Storage	Tata McGraw Hill, New Delhi \ 2st edition	2000

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name:	Name: Dr. R. Manicka
Dr.A.G. Kannan	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master o	Master of science	
Course Code:	22000			Title	Batch:	2023-2025	
	23PPS	52IN2		Non Major	Semester:	II	
Lecture Hrs./Week or Practical Hrs./Week	1	Tutorial Hrs./Sem.	-	Elective: Biomedical Instrumentation	Credits:	2	

To apply knowledge of physics in the field of biomedical instrumentation

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Recollect the basics of physics related to biology	K1
CO2	Acquire the prior knowledge of fundamental concepts, functioning and applications of physiological devices.	К2
CO3	Implement the knowledge in the construction and operation of instruments	К3
CO4	Analyze the process of operation	K4
CO5	Evaluate the technologies and model used in the biomedical instrumentation.	K5

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	М	-	L	-	-	М	-
CO2	Н	М	-	Н	М	-	М	-
CO3	М	-	L	М	L	-	-	М
CO4	-	-	-	М	М	L	-	L
CO5	-	L	М	Н	М	L	М	_

H – High; M – Medium; L – Low

Biomedical Instrumentation

Units	Content	Hrs							
	BIOPOTENTIAL RECORDERS								
Unit I	Introduction – Characteristics of the recording system – Electrocardiography (ECG) –	3							
	Electroencephalography (EEG) – Electromyography (EMG)								
	PHYSIOLOGICAL ASSIST DEVICES								
Unit II	Introduction – Pacemakers – Pacemaker batteries – Artificial heart valves –	3							
	Defibrillators								
	OPERATION THEATRE EQUIPMENT								
Unit III	Introduction – Surgical diathermy – Shortwave diathermy – Microwave diathermy –	3							
	Ultrasonic diathermy								
	SPECIALIZED MEDICAL EQUIPMENT								
Unit IV	Introduction – Blood cell counter – Electron microscope – Radiation detectors – Digital	3							
	thermometer								
T T 1 / T T	ADVANCES IN BIOMEDICAL INSTRUMENTATION								
Unit V	Introduction – Lasers in medicine – Endoscopes – Computer tomography – Magnetic	3							
	resonance imaging								
	Total Contact Hrs	15							

• Italic font denotes self-study

Pedagogy and Assessment Methods:

Seminar, Power Point Presentation, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION	
1	M. Arumugam	Biomedical Instrumentation	Anuradha Agencies	2002	

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	John G. Webster	Medical Instrumentation Application and Design	John Wiley and Sons, New York	2004

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name:	Name: Dr. R.
Dr.A.G. Kannan	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master o	of Physics
Course Code:	23PPS207			Title CC VII:	Batch: Semester:	2023 – 2025 I & II
Lecture Hrs./Week or Practical Hrs./Week	4 Tutorial Hrs./Sem. -			General Physics Lab I	Credits:	3

To develop the skill to gain knowledge in experimental techniques

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand and familiarize with the basics of experimental physics	K1/K2
CO2	Apply the knowledge in performing the experiments	K3
CO3	Analyze the working of the apparatus	K4
CO4	Evaluate and compare the experimental results with theoretical values	K5
CO5	Design new experimental set up to validate the theory	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	Н	Н	Н	Н	Н	Н	Н
CO2	Μ	М	Н	М	Н	М	Н	Н
CO3	Н	Н	Н	Н	Н	Н	Н	Н
CO4	М	Н	Н	Н	Н	Н	Н	Н
CO5	Н	М	Н	М	Н	Н	Н	Н

H-High; M-Medium; L-Low

General PhysicsLab I

List of experiments:

- 1. Young's modulus Elliptical fringes Cornu's method
- 2. Viscosity of a liquid Mayor's oscillating disc
- 3. Thermal conductivity Forbe's method
- 4. Temperature coefficient and band gap energy of a Thermistor
- 5. Measurement of Spot size, Divergence & Wavelength of a Laser beam
- 6. Young's modulus Hyperbolic fringes Cornu's method
- 7. Specific heat of a liquid Ferguson's method
- 8. λ , d λ & Thickness of FP etalon Fabryperot Interferometer
- 9. Rydberg's constant Helium spectrum
- 10. Refractive index of a liquid & Absorption coefficient of transparent Material -Laser Source
- 11. Rydberg's constant Solar spectrum
- 12. Hall effect in Semiconductors
- 13. e/m Thomson's method
- 14. Stefan's constant
- 15. Biprism Determination of λ of monochromatic source & thickness of a transparent sheet

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Worsnop, Flint	Advanced Practical Physics	Asia Publishing house	1971
2	Singh S.P.	Advanced Practical Physics	Pragati Prakashan	1998

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr.M.Karthika	Name: Dr.T.E.Manjulavalli	Name:	Name: Dr. R. Manicka
		Mr. K.Srinivasan	Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master o	of Physics
Course Code:	23PPS208			TitleCC VIII:	Batch: Semester:	2023 – 2025 I & II
Lecture Hrs./Week or Practical Hrs./Week	4	Tutorial Hrs./Sem.	-	Electronics Lab I	Credits:	3

• To understand the working of semiconductor devices, amplifiers and oscillators.

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Procure the knowledge of characteristics of semiconductor devices	K1/K2
CO2	Apply the basic principles of electronics to verify the various device characteristics	К3
CO3	Analyze the theory of transistors, capacitors, resistors and implement the knowledge with workable circiuts	K4
CO4	Troubleshoot the combinational circuits using digital IC's	K5
CO5	Develop the devices like regulated power supply by using the principles of electronics	K6

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	Н	L	М	Н	L	Н	М
CO2	Н	Н	L	Н	Н	L	Н	Н
CO3	Н	М	М	Н	Н	L	М	Н
CO4	Н	М	М	М	Н	L	М	Н
CO5	Н	Н	L	Н	Н	Н	М	Н

Electronics Lab I

List of experiments:

- 1. CRO Familiarization: Lissajous figures, Measurement of Voltage, Phase and Frequency
- 2. I.C Regulated power supply
- 3. RC coupled amplifier Double stage
- 4. Feedback amplifier
- 5. FET amplifier Common Source
- 6. Emitter follower
- 7. UJT Characteristics
- 8. FET amplifier Common Drain
- 9. Phase shift Oscillator using opamp
- 10. Power amplifier Push Pull
- 11. SCR characteristics
- 12. Astable Multivibrator using 555 timer IC and Op amp
- 13. Power amplifier Complementary symmetry
- 14. UJT Relaxation Oscillator
- 15. Wave shaping circuits Differentiator, Integrator, Clipper and Clamper

ICA DO				
S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Woollard G	Practical Electronics	McGraw Hill, New Delhi	2 nd Edition 1984

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Paul B. Zbar, Joseph Sloop	Electricity & Electronics Fundamentals	McGraw Hill, New Delhi	1983
		A Text-Lab Manual		
2	Paul B.Zbar, Malvino, Miller	Electronics: A Text- Lab Manual	Mc.Graw Hill, New Delhi	1997
3	Subramaniyan S.V.	Experiments In Electronics.	Macmillan India Ltd, New Delhi.	1983
4	Bhargowa N.N.	Basic Electronics and Linear Circuits.	McGraw Hill, New Delhi.	1984

Designed by	Verified by HOD	Checked by CDC	Approved by COE	
Name:	Name:	Name:	Name: Dr. R.	
Dr. S. Shanmuga Priya	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Manicka Chezian	
Signature:	Signature:	Signature:	Signature:	

Programme Code:	M.Sc. PHY			Programme Title:	Master of Science		
Course Code:		23PPS309	Title CC IX:	Batch: Semester:	2023 – 2025 III		
Lecture Hrs./Week	5 Tutorial Hrs./Sem.			Quantum Mechanics II	Credits:	5	

To familiarize with advanced concepts and methodology of quantum mechanics, quantization of fields and central force problems

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Demonstrate understanding of basic principles of quantum, concepts and terminology of Quantum mechanics and their applications to various physical and chemical problems and gain an insight in the quantum field theory	K1/K2
CO2	Apply the concepts of quantum mechanics to quantitatively predict the behavior of physicalSystems such as Atomic, Nuclear, Molecular, Solid state and statistical physics	К3
CO3	Analyze and apply the modern quantum mechanical methods for determining electronicstructure of molecules and atoms	K4
CO4	Integrate several components to find solution to the problems in Molecular and elementary particle physics by choosing an appropriate theoretical method	К5
CO5	Adopt systematic methodology and relevant tool to find solution to problems of modern physics, interpret the findings and communicate the results effectively	K6

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	М	Н	Н	L	L	Н	М
CO2	Н	Н	Н	М	М	М	Н	М
CO3	Н	Н	Н	М	М	М	М	Н
CO4	Н	Н	Н	Н	Н	М		Н
CO5	Н	Н	Н	Н	Н	Н	М	М

H - High; M - Medium; L - Low

Quantum Mechanics II

Units	Content	Hrs
Unit I	SCATTERING THEORY Scattering amplitude and scattering cross section - Integral equation in terms of Green's function - Born approximation and its validity - Application to screened coulomb potential - Partial wave analysis - Optical theorem - Application to low energy two nucleon scattering.	15
Unit II	SEMI CLASSICAL THEORY OF RADIATION Harmonic Perturbation - Absorption and Emission of Radiation : The electromagnetic Field - The Hamiltonian operator -Electric Dipole Approximation - Einstein's A and B coefficients - Selection rules - Rayleigh Scattering - Raman Scattering.	15
Unit III	RELATIVISTIC QUANTUM MECHANICS I Klein Gordon equation - Plane wave solutions - Position probability density and current density - Applications to the study of energy levels of electron in a coulomb field - Dirac equation - Probability and Current densities - Dirac matrices - Plane wave solutions for Dirac equation -Negative energy - Magnetic moment of the electron - Existence of electron spin - Spin-orbit energy - Dirac's equation of a central field force (H-Atom) - Solution of Dirac's equation of a central field force (H-Atom) - Hydrogen spectrum according to Dirac equation.	15
Unit IV	QUANTIZATION OF FIELDS Field - Quantization procedure for particles - Classical formulation of Lagrangian and Hamiltonian equations of motions - Quantum equation of the field - Quantization of the Schrodinger equation - Klein Gordon field - The Dirac field - Creation, annihilation and number operators.	15
Unit V	MANY ELECTRON SYSTEMS One particle central force problem - Non interacting particles and separation of variables - Reduction of the two particles problems - Two particles rigid rotor - Hydrogen atom - Bound state Hydrogen atom wave functions - Hydrogen like orbitals - LCAO - V.B Theory - Hartree Method - Hartree Fock, <i>SCF method</i> .	15
	Total Contact Hrs	75

Pedagogy and Assessment Methods:

Chalk and Talk lectures, Group Discussion, Seminar, Interaction, power pointpresentation

Text Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Mathews, Venkatesan	A Text Book of Quantum Mechanics	Tata McGraw Hill Company Ltd, New Delhi.	2016
2	Gupta, Kumar, Sharma	Quantum Mechanics	Pragathi Prakash Publications, Meerut	2018
3	Aruldhas	Quantum Mechanics	Prentice Hall India Company Pvt Ltd, New Delhi	2014
4	Satyaprakash	Advanced Quantum Mechanics	Kedar nath Ram Nath, Meerut \ Fifth revised edition	2017
5	Chatwal G.R., Anand S.K.	Quantum Mechanics	Himalaya Publishing Company, New Delhi	2011
6	Ira. N. Levine	Quantum Chemistry	Himalaya Publishing Company, New Delhi	2015

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION			
1	Gupta S.L., GuptaI.D.	Advanced Quantum Theory And Fields	S Chand and Company Ltd, NewDelhi	2016			
2	Atkins P.W.	Quantum Mechanics	Oxford University Press, Oxford	1983			
3	Walter. A. Harrison	Applied Quantum Mechanics	Applied Publishers Ltd Mumbai	2000			
4	Wu T.Y. Pauchy Hwang W.Y.	Relativistic Quantum Mechanics & Quantum Fields	Allied Publishers Ltd, NewDelhi	1991			
	Related online contents[MOOC, SWAYAM, NPTEL, Websites etc]						
5	http://nptel.ac.in/courses/115/103/115103104						
	http://nptel.ac.in/courses/115/106/115106065/						

Designed by	Verified by HOD	Checked by CDC	Approvedby COE	
Name:	Name:	Name:	Name:	
Dr.T.E.Manjulavalli	Dr.T.E.Manjulavalli	Mr.K.Srinivasan	Dr. R. Manicka Chezian	
Signature:	Signature:	Signature:	Signature:	

Programme Code:	M.Sc.PHY			Programme Title:	Master of Physics	
Course Code:	23PPS310			Title	Batch:	2023 - 2025
				CC X:	Semester:	III
Lecture Hrs./Week or	5	Tutorial Hrs./Sem.	-	Molecular Spectroscopy	Credits:	5
Practical Hrs./Week						

To develop the skill to gain knowledge in group theory and different spectroscopic techniques

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement				
CO1	Understand the symmetry of molecules and principle of different spectroscopic techniques	K1/K2			
CO2	Apply symmetry operations to predict the point group of molecules	K3			
CO3	Analyze the different motions of molecules and predict Microwave, IR and Raman activity	K4			
CO4	Evaluate the conditions for resonance in NMR, ESR, NQR and Mossbauer Spectroscopy	K5			
CO5	Create a character table and predict IR and Raman activity for new compounds	K6			

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	Н	Н	Н	М	Н	Н	Н
CO2	Н	Н	Н	Н	М	Н	Н	Н
CO3	Н	Н	Н	М	М	Н	Н	Н
CO4	Н	М	М	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Н	Н	Н

H-High; M- Medium; L-Low

Molecular Spectroscopy

Units	Content	Hrs
	MOLECULAR SYMMETRY & GROUP THEORY Group - Group Multiplication table - Classes - Symmetry elements and Symmetry	
Unit I	operations –Symmetry planes and reflections – Inversion centre - Proper axes and proper rotations - Improper axes and improper rotations - Point groups - A systematic procedure for symmetry classification of molecules - Representations of a group - The Great Orthogonality theorem and its consequences - <i>Character tables</i>	15
Unit II	MICROWAVE SPECTROSCOPY Rotation of molecules – Rigid Diatomic molecule – Intensities of spectral lines - Effect of isotopic substitution –Non rigid rotator –Spectrum of non rigid rotator – Polyatomic molecules: Linear molecules - Symmetric top molecules - Techniques and	12
	Instrumentation.	
Unit III UnitIV	IR SPECTROSCOPY Vibrating diatomic molecule: Energy of a diatomic molecule – Simple harmonic oscillator - Diatomic Vibrating Rotator - Vibrations of Polyatomic molecules: Fundamental vibrations and their symmetry – Overtone and combination of frequencies – Fourier transform IR spectroscopy RAMAN SPECTROSCOPY Quantum theory of Raman Effect - Classical theory of Raman effect: Molecular polarizability - Pure Rotational Raman spectra: Linear molecules – Symmetric top molecules - Vibrational Raman spectra: Raman activity of vibrations- Rule of Mutual Exclusion – Overtone and combination of vibrations - Structure determination from Raman & IR spectroscopy - Techniques & Instrumentation RESONANCE SPECTROSCOPY Magnetic properties of Nuclei - Resonance condition - Bloch equations and their Steady State solutions - Chemical shift – NMR instrumentation - Applications: NMR imaging - Concept and theory of Electron Spin Resonance –	18
Unit V	ESR spectrometer NQR, MOSSBAUER AND ELECTRONIC SPECTROSCOPY Quadruple nucleus – Principle of NQR – Transitions for axially and non axially symmetric systems: Frequencies of transitions – Half Integral Spins – Integral Spins – NQR Instrumentation – Regenerative continuous wave oscillator method - Applications: Chemical bonding -Halogen quadrupole resonance - Principle and theory of Mossbauer Effect - Mossbauer instrumentation - Applications - Electronic spectroscopy – Vibrational coarse structure of electronic spectra - Frank Condon principle – Fortrat parabola	15
	Total Contact Hrs	75

• Italic font denotes self-study

Pedagogy and Assessment Methods:

Seminar, PowerPoint Presentation, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THEBOOK	PUBLISHERS \EDITION	YEAR OFPUBLICATI ON
1	Albert Cotton F	Chemical Application of Group Theory (Unit I)	Wiley Interscience	2008
2	Banwell C.N. Mccash E.M.	Fundamental Of Molecular Spectroscopy (Units II &III)	Tata McGraw Hill	2017
3	Aruldhas G	Molecular Structure and Spectroscopy (Units IV & V)	Prentice Hall of India Pvt Ltd	2007

S.NO	AUTHOR	TITLE OF THEBOOK	PUBLISHERS \EDITION	YEAR OFPUBLICATI ON	
1	Barrow G.M	Introduction to Molecular Spectroscopy	Prentice Hall of India Pvt Ltd	1962	
2	Chatwal and Anand	A Text Book Of Spectroscopy	Prentice Hall of India Pvt Ltd	2016	
3	Manas Chanda	Atomic Structure and The Chemical Bond	Tata McGraw Hill	2000	
4 Related online contents [MOOC, SWAYAM, NPTEL, Websites etc] 4 https://nptel.ac.in/courses/115/105/115100/ https://onlinecourses.nptel.ac.in/noc20_cy31/preview					

Designed by	Verified by HOD	Checked by CDC	Approvedby COE
Name:	Name:	Name:	Name: Dr. R.
Dr.M.Karthika	Dr.T.E.Manjulavalli	Mr.K.Srinivasan	Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master of Science	
Course Code:	23PPS3E5			TitleCC Elective	Batch: Semester:	2023 – 2025 III
Lecture Hrs./Week	5	Tutorial Hrs./Sem.	-	III:Thin film & Nano science	Credits:	5

To develop the knowledge about fundamentals of Thin Film and Nano science

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the concepts of Growth process of Thin film materials and familiarize with the basics of Nanotechnology and Quantum structure	K1/K2
CO2	Apply the various methodologies to fabricate materials	К3
CO3	Categorize the materials according to their size	K4
CO4	Summarize the various properties of thin materials and nanomaterials using several characterization techniques	К5
CO5	Synthesis thin-film materials and nano-materials for several applications	K6

	Mapping							
PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	М	L	L	-	L	Н	Н
CO2	М	Н	-	-	-	-	М	Н
CO3	М	М	М	Н	-	-	М	Н
CO4	-	-	-	Н	-	-	-	Н
CO5	-	-	-	-	Н	М	Н	Н

H-High; M-Medium; L-Low

Thin film & Nano science

Unit	Content	Hrs
Ι	 Thin film Nature of thin film, Thermodynamics of nucleation, Film growth, Deposition parameters& grain size, Epitaxy, Incorporation of defects, Impurities in thin films. Deposition Techniques: Physical Vapour deposition: Thermal Evaporation, RF Sputtering, Reactive sputtering, Chemical vapour deposition: Pyrolysis, Chemical deposition: Chemical Bath deposition. 	15
II	 Properties of thin films Optical properties: Reflection, Transmission, Absorption, Energy band gap, Transition. Electrical properties: Conducting properties of metal, semiconductor and insulator films, Hall effect and Magneto resistance Film Thickness Measurement: Interferometry, Fringes of equal thickness (FET), Fringes of equal chromatic order (FECO), Ellipsometry, Multiple beam interferometry. 	15
III	Nanoscience Introduction- Moore's laws- classification of nanostructures- quantum confinement in nanostructures- Electronic density of states- excitons- Influence of nanoscale dimension on properties: Structural properties, Thermal properties, chemical properties, Mechanical properties, Magnetic properties, Optical properties, Electronic properties, Biological systems- Metal nanoclusters- Semiconducting nanoparticles- Carbon nanostructures: Carbon nanoclusters-carbon nanotubes-properties	15
IV	 Synthesis and Characterization of Nanoparticles Growth mechanism : Vapour liquid solid growth(VLS)- Vapour solid growth(VS) Top down approach (Physical method): Lithography-Ball milling -Laser induced evaporation Bottom up approach (Chemical method): Sol-gel process-Self assembly-Solvo thermal process- Electro chemical synthesis - Thermolysis Characterization: XRD – SEM -TEM- EDAX-Particle size analyzer- IR and Raman spectroscopy-UV spectroscopy-Photo luminescence spectroscopy. 	15
V	Applications of Nanomaterials: NEMS – MEMS - coulomb blockade effect – SET – QDLED- Quantum dot sensitized solar cell - Quantum dot laser - Quantum cascade laser – Carbon nanotube transistors - Silicon nanowire biosensor - drug delivery.	15
	Total contact hours	75

Pedagogy and Assessment Methods:

Seminar, Power Point Presentation, Chalk and talk, Quiz, Assignments, Group Task

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Goswami A	Thin film fundamentals	New Age International	2006
2	L. T. Meissel and R. Glang	Hand book of Thin Film technology	McGraw -Hill	1978
3	Kasturi L Chopra	Thin film phenomena	McGraw -Hill	1979
4	Charles P. Poole, Frank J. Owens,	Introduction to Nanotechnology	John Wiley & Sons, New York	2011
5	Robert W.Kelsall, Ian W. Hamley, Mark Geoghegan	Nanoscale Science and Technology	John Wiley & Sons, New York	2005
6	Michael F. Ashby, Paulo J. Ferreira, Daniel L. Schodek	Nanomaterials, Nanotechnologies and an introduction for engineers and design architecture	Elsevier Science	2009
7	Guozhong CAO	Nano Structures and Nano Materials: Synthesis, Properties and Applications	Imperial College plus, London	2004

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION	
1	Milton Ohring	Materials Science of Thin films	Academic Press	2001	
2	Muralidharan V.S. Subramania A	Nanoscience and Technology	Ane Books Pvt Ltd – I Edition, New Delhi		
3	Masuo Hosokawa, Kiyoshi Nogi,Makio Naito, Toyokazu Yokoyama	Nanoparticle Technology Handbook	Elsevier Science	2007	
4	Hari Singh Nalwa	Handbook of Nanostructured Nanotechnology	Academic Press Vol(1-5)	2000	
5 Related online contents [MOOC, SWAYAM, NPTEL, Websites etc] <u>http://www.ncpre.iitb.ac.in/slotbooking/SOP/62SOP.pdf</u> <u>https://en.wikipedia.org/wiki/Nanomaterials</u> <u>https://www.nano.gov/you/nanotechnology-benefits</u>					

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr. S. Shanmuga Priya	Name: Dr.T.E.Manjulavalli	Name: Mr. K.Srinivasan	Name: Dr. R. Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master	of Physics
Course Code:	23VAD301			Title Value Added	Batch: Semester:	2023 – 2025 III
Lecture Hrs./Week or Practical Hrs./Week	_	Tutorial Hrs./Sem.	-	Course: Python Programming	Credits:	GRADE

To introduce Python programming to solve scientific and technological problems

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Acquire the knowledge to analyze the problem	K1 / K2
CO2	Plan to write the algorithm of a program with the knowledge of mathematical operators, logical operators, conditional and looping statements	К3
CO3	Analyze the problems in various domains of physics to write the program using python codes	K4
CO4	Explain clearly the importance of different function statements and pass the arguments between functions	K5
CO5	Device and compile the python programming for application in the field of science and technology	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	М	М	М	Н	Н	L	Н	М
CO2	М	Н	М	L	Н	L	Н	Н
CO3	L	М	Н	М	М	М	М	М
CO4	М	L	L	Н	Н	Н	М	Н
CO5	L	М	L	М	Н	Н	М	Н

H – High; M – Medium; L – Low

PythonProgramming

Units	Content	Hrs
Unit I	Basics of Programming Basis of programming– IDLE - variables and data types – strings – manipulating data – operators - syntax	10
Unit II	Control Statements, Looping, File Handling Control statements: if, if-else, nested if-else – loops (for, while); nested loops – break – continue – pass - text files – file handling and directories – - printing on screen – reading and writing of data in a file - opening and closing a file	10
Unit III	Functions and Modules Defining a function - Calling a function – Types of functions – Function arguments – python modules - Importing module – commonly used modules – writing and executing python program for few scientific problems	10
	Total Contact Hrs	30

Pedagogy and Assessment Methods:

Seminar, Power Point Presentation, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Kenneth Lambert	Fundamentals of Python: First Programs	Course Technology, Cengage Learning	2012

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION				
1	Rashi Gupta	Making Use of Python	Wiley Publishing, Inc., New York	2002				
2	Related online cont www.python.org	Related online contents [MOOC, SWAYAM, NPTEL, Websites etc] www.python.org						

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name:	Name: Dr. R. Manicka
Mr.T.Ponraj	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Chezian
		Signature:	
Signature:	Signature:		Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master o	of Physics
Course Code:	23PPS411			TitleCC XI: Lasers	Batch: Semester:	2023 – 2025 IV
Lecture Hrs./Week or Practical Hrs./Week	5 Tutorial Hrs./Sem. -			& Non-Linear Optics	Credits:	5

To develop the skill to gain knowledge in the basic principles of Laser and Non-linear optics

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the basic principle of laser and its interaction with matter	K1/K2
CO2	Apply the principle and demonstrate the working of different types of Lasers	K3
CO3	Analyze the performance of laser and improve the quality	K4
CO4	Evaluate the role of laser in nonlinear optics	K5
CO5	Design a Q-switched laser for nonlinear optical studies	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	М	Н	Н	Н	Н	Н	Н
CO2	М	Н	Н	Н	Н	Н	Н	Н
CO3	Μ	Н	Н	Н	Н	Н	Н	Н
CO4	Н	М	Н	Н	Н	Н	Н	Н
CO5	Н	М	Н	Н	Н	Н	Н	Н

H-High; M-Medium; L-Low

Lasers & Non-Linear Optics

Units	Content	Hrs
Unit I	BASIC PRINCIPLES OF LASERS Energy levels - Thermal equilibrium - Einstein's prediction – Einstein Relations – Condition for large Stimulated emissions - Condition for light amplification - Line shape function - Population inversion - Pumping methods – Active medium – Metastable states – Pumping schemes – Optical Resonator and its Action - Line broadening – Cavity configurations - Laser rate equations : Three level laser - Four level laser	15
Unit II	LASER CHARACTERISTICS Spatial & Temporal coherence - Directionality - Monochromaticity - Intensity TYPES OF LASERS Ruby laser - Nd YAG laser - Helium Neon laser - Carbondioxide laser – Semiconductor diode laser - Excimer laser - Dye laser - Chemical laser - X ray laser - Free electron laser - Fiber laser - Color center laser	15
Unit III	 PERFORMANCE IMPROVEMENT OF LASER Q- factor - Methods of Q switching – Cavity dumping – Techniques for mode locking – Laser amplifiers - Distributed feedback laser APPLICATIONS OF LASER Material processing: Surface treatments – Drilling –Cutting - Welding - Lasers in Nuclear energy: Isotope separation - Laser in medicine - Laser in Defence –Holography. 	15
Unit IV	NON-LINEAR OPTICSHarmonic generation - Second harmonic generation - Phase matching - Third harmonic generation - Optical mixing - Parametric generation of light - Self focusing of lightMULTIPHOTON PROCESSESMulti quantum Photo electric effect – Two photon processes (Experiments) - Three photon processes - Second harmonic generation - Parametric light Oscillator - Frequency up conversion - Phase conjugate optics	15
Unit V	LASER SPECTROSCOPY Rayleigh and Raman scattering - Stimulated Raman effect - Hyper Raman effect (Classical treatment) - Coherent Anti Stokes Raman Scattering - Spin flip Raman Laser - Photo acoustic Raman Spectroscopy - Saturation absorption Spectroscopy - Doppler free two photon Spectroscopy – Multi-photon Ionization – Single Atom detection with Lasers -Laser cooling and trapping of neutral atoms	15
	Total Contact Hrs	75

• Italic font denotes self-study

Pedagogy and Assessment Methods:

Seminar, Power Point Presentation, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Avadhanulu M.N	Lasers Theory And Applications (Units I - III)	S.Chand,	2001
2	Laud B.B	Lasers And Nonlinear Optics (Units III - V)	New age international private Ltd,	2011

S.NO	AUTHOR	BOOK		YEAR OF PUBLICATION			
1	William T.	Laser Fundamentals	Cambridge University	2008			
1	Silfvast		Press	2008			
	Ghatak,	Lasers Fundamentals And	Macmillan India Ltd				
2	Thyagarajan	Applications		2019			
			Springer International				
3	Ralf Menzel	Photonics	Edition	2001			
	Abbi S.C. Ahmad	Non Linear Optics And	Narosa publishing				
4	S.A.	Laser Spectroscopy.	house	2001			
5	Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]						
	https://nptel.ac.in/courses/115/101/115101008/						
	https://spie.org/education/courses/coursedetail/SC047?f=InCompany						
	https://ipenche.char	nia.teicrete.gr/an-introductio	n-to-laser-physics-and-s	systems/			

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name:	Name: Dr. R. Manicka Chezian
Dr.M.Karthika	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	
			Signature:
Signature:	Signature:	Signature:	

Programme Code:	M.Sc.	РНҮ		Programme Title:	Master of S	cience
Course Code:	23PPS	5412		Title	Batch:	2023-2025
				CC XII:	Semester:	1 V
Lecture Hrs./Week	5		-	Nuclear &		
or Practical Hrs./Week		Tutorial Hrs./Sem.		Particle Physics	Credits:	5

To study the nuclear structure and properties of nuclei through nuclear models

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Acquire basic knowledge on the properties, structure of nucleus and nuclear reactions	K1
CO2	Understand the properties and significance of stable nucleus through different types of nuclear models	K2
CO3	Apply the basic concepts in the classification of elementary particles like quarks, Higgs bosons	K3
CO4	Analyze problem solving skills in nuclear physics and pave a way to research in nuclear physics	K4
CO5	Evaluate the fundamental properties of elementary particles, as well as symmetries and the standard model	K5

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	М	L	-	М	-	Н	-
CO2	Н	М	L	-	М	-	М	-
CO3	L	Н	М	L	Н	-	М	L
CO4	-	М	Н	М	М	L	L	М
CO5	-	М	Н	Н	L	М	-	Н

H-High; M-Medium; L-Low

Nuclear & Particle Physics

Units	Content	Hrs
Unit I	TWO BODY PROBLEM AND NUCLEAR FORCES Deuteron - Properties - Ground state of Deuteron –Deuteron Problem- Neutron Proton scattering at low energies - Scattering length and effective range - Spin dependence of n p forces - Tensor forces –Interpretation of high energy nucleon – nucleon scattering - Exchange forces - Nuclear forces - Properties of nuclear forces - Yukawa theory of nuclear forces	15
Unit II	NUCLEAR MODELS Liquid drop model - Weizacker semi empirical mass formula - Shell model - Magic numbers - Magnetic moments and the Shell model - Prediction of angular momenta of nuclear ground states by Shell model - Collective model - Vibrational and Rotational states - <i>Elementary ideas</i> <i>of Unified and Superconductivity model</i>	15
Unit III	NUCLEAR DISINTEGRATION Law of radioactive decay - Alpha ray emission - Gamow's theory of alpha decay - Alpha ray energies and fine structure - Alpha disintegration energy - Beta decay - Fermi's theory of beta decay - Fermi and G.T Selection rules - Parity in beta decay - Helicity - Electron capture - Gamma decay - Theory of angular correlation of successive radiation - Internal conversion - Angular momentum and Parity of excited levels	15
Unit IV	NUCLEAR FISSION AND FUSION REACTORS Fission and Nuclear structure - Bohr Wheeler's theory – Classification of neutrons according to energy-energetics of fission –Controlled fission reactions – four factor formula - Fission reactors - Radioactive fission products - A natural fission reactor - Basic fusion processes - Characteristics of fusion - Solar fusion - Controlled fusion reactors – Nuclear reactions: Compound nuclear reactions – direct reactions	15
Unit V	ELEMENTARY PARTICLES Fundamental forces in nature –positron and other antiparticles – meson and beginning of particle physics-General classification of Elementary particles - Conservation law – strange particle and strangeness – production of elementary particles and measurement of particle properties – Eight fold way – CPT invariance - Gellmann Okuba mass formula for Baryons – Quark : Original quark model, charm and other developments – Colored Quarks (Quantum Chromodynamics) – Experimental evidence for quarks- Explanation of nuclear force in term of quarks – Electroweak theory and standard model – Grand unification theory and super symmetry – String theory – Higgs boson	15
	Total Contact Hrs	75

• Italic font denotes self-study

Pedagogy and Assessment Methods:

Seminar, Power Point Presentation, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
	Tayal D.C.	Nuclear Physics	5th edition,	2008
1		(Units I - IV)	Himalaya	
			Publishing house,	
			Mumbai,	
	Pandya M.L. Yadav	Elements of Nuclear Physics,	5th Edition,	1989
2	R.P.S.	(Units I - IV)	Kedar Nath Ram	
			Nath, Meerut	
	Atam P.Arya,	Elementary Modern Physics	Addison - Wesley	1974
3		(Units III & IV)	Publishing Co,	
	Raymond A.Serway,	Modern Physics	2nd Edition,	-
4	Clement J.Moses, Curt	(Units IV & V)	Saunders College	
	A. Moyer		publishing	

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION			
1	Srivastava B.N	Basic Nuclear Physics	12th edition, Pragathi	1971			
1			Prakashan, Meerut				
2	Kenneth S.Krane,	Introductory Nuclear	2nd edition, John	1988			
2		Physics	Wiley & sons, New				
			York.				
3	Related online contents [MOOC, SWAYAM, NPTEL, Websites etc]						
5	https://nptel.ac.in/courses/115/104/115104043/						
	https://nptel.ac.in/courses/115/106/115106087/						
	https://nptel.ac.in/courses/	<u>115/103/115103101/</u>					

Designed by	Verified by HOD	Checked by CDC	Approved by COE
N	N		N
Name:	Name:	Name:	Name:
Dr.T.Ponraj	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Dr. R. Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc.	РНҮ		Programme Title:	Master c	f science
Course Code:	23PPS	54E7		Title	Batch:	2023- 2025
				CC Elective IV:	Semester:	IV
Lecture Hrs./Week or Practical Hrs./Week	5	Tutorial Hrs./Sem.	-	Microprocessor & Object-Oriented Programming with C++	Credits:	5

To acquire knowledge about microprocessor and object-oriented programs •

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Acquire the knowledge of various instruction set of the Microprocessor Intel 8085	K1/K2
CO2	Apply the various C++ functional operators to build a secure program	К3
CO3	Analyze the method of interfacing of different programmable devices	K4
CO4	Solve problems in Physics based on Microprocessor and OOPS	K5
CO5	Design programs based on microprocessor for various applications like traffic light controller, stepper motor, A/D Converter and D/A Converter	K6

PO/PSO **PO2 PO3 PO4 PO5 PO6** PSO1 PSO2 **PO1** CO C01 Н Μ М Н L Н Н -**CO2** Η Н Μ Н L Η Η L **CO3** Η Η Μ Η Η L Η Η **CO4** Η Η Н Н Н L Μ Μ CO5 Η Η Η Η Η Η Η L

Mapping

Microprocessor & Object-Oriented Programming with C++

Unit	Content	Hrs
	MICROPROCESSOR FUNDAMENTALS	
	8085 Microprocessor pin diagram & functions - Architecture -	
Ι	Addressing modes - Instruction set - Data transfer instructions -	15
1	Arithmetic instructions - Logical and Branch instructions - Stack,	15
	I/O & Machine control instructions – Subroutine, Conditional Call	
	instructions and return instructions	
	MICROPROCESSOR PROGRAMMING &	
	MICROCONTROLLER	
	Steps involved in Microprocessor programming - Straight line	
II	programs - Looping programs - Mathematical programs	15
	Microcontroller – Intel 8048 Series of microcontroller:	
	Architecture of 8048 - Intel 8051 Series of microcontroller :	
	Block diagram of 8051	
	PRINCIPLES OF OBJECT-ORIENTED PROGRAMMING	
	Object Oriented Programming Paradigm - Basic concepts of	
	Object Oriented Programming - Benefits of OOP	
III	CLASSES & OBJECTS	
	Specifying a Class - Defining Member functions - Nesting of	15
	Member functions - Private Member functions - Arrays within a	
	class - Memory allocation for objects- Static data members &	
	Member functions - Arrays of Objects - Objects as function	
	arguments - Friendly functions – Returning objects	
	CONSTRUCTORS & DESTRUCTORS	
	Constructors - Parameterized Constructors - Multiple	
	Constructors in a Class - Copy Constructor -Dynamic	
	Constructor- Destructors	
IV	OPERATOR OVERLOADING	15
	Defining Operator Overloading - Overloading Unary & Binary	
	Operators - Overloading Binary Operators using Friends - Rules	
	for Overloading Operators	
	INHERITANCE: EXTENDING CLASSES	
	Defining Derived classes - Single inheritance - Making a Private	
	Member inheritable - Multilevel inheritance - Multiple inheritance	
V	- Hierarchical inheritance - Hybrid inheritance - Virtual base	15
	POINTERS &VIRTUAL FUNCTIONS	
	Pointers to Objects - this Pointer - Pointers to Derived Classes -	
	Virtual functions	77
	Total contact hours	75

• Italic font denotes self study

Pedagogy and Assessment Methods:

Seminar, Power Point Presentation, Chalk and talk, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Ramesh S.Gaonkar	Microprocessor Architecture Programming & Applications with the 8085	Penram International Publishing, New Delhi. (Unit I)	3 rd Edition 1997
2	Roger L.Tokheim,	Microprocessor Fundamentals	Schaum's Outline Series, McGraw Hill Book Company, New Delhi, (Units I & II).	3 rd Edition 1987
3	Badri Ram	Advanced microprocessors & interfacing	Mc Graw Hill Publication	20 th reprint 2010
4	Balagurusamy E.	Object Oriented.Programm ing with C++.	Tata Mc Graw Hill Publication, New Delhi, (Units III – V).	2004

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION		
1	Venugopal K.P. Rajkumar, Ravishankar T	Mastering C++	Tata Mc Graw Hill Publication, New Delhi.	2001		
2	Ravichandran D	Programming With C++	Tata Mc Graw Hill Publication, New Delhi.	2003		
3	Related online contents [MOOC, SWAYAM, NPTEL, Websites etc] https://nptel.ac.in/courses/108/105/108105102/ https://nptel.ac.in/courses/106/108/106108100/ https://nptel.ac.in/courses/108/103/108103157/					

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name: Dr. S. Shanmuga Priya	Name: Dr.T.E.Manjulavalli	Name: Mr. K.Srinivasan	Name: Dr. R. Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master of Physics	
Course Code:	23PPS413			Title	Batch:	2023 - 2025
	23113413		CC XIII:	Semester:	III & IV	
Lecture Hrs./Week or Practical Hrs./Week	4	Tutorial Hrs./Sem.	-	General Physics Lab II	Credits:	3

To achieve a practical knowledge by applying the experimental methods to correlate with the Physics theory and analyze the experimental data

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Understand the theoretical concepts behind every experimental methods	K1 / K2
CO2	Apply the Knowledge of theory and analytical techniques to interpret experimental data	К3
CO3	Analyze the experimental results with mathematical concepts to obtain quantitative results	K4
CO4	Communicate the procedure and outcomes of an experiment	K5
CO5	Design new methodology to perform an experiment with the possible equipment in general physics laboratory	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	М	М	-	-	-	-	Н	-
CO2	М	М	-	-	Н	М	Н	М
CO3	-	L	М	М	М	М	М	Н
CO4	-	-	L	Н	Н	Н	М	Н
CO5	-	-	L	М	Н	Н	-	Н

H - High; M - Medium; L - Low

General PhysicsLab II

List of Experiments:

- 1. Copper Arc Spectra CDS
- 2. λ , $d\lambda$ of a Monochromatic source Michelson's Interferometer
- 3. Zeeman Effect
- 4. Magnetic Susceptibility Quincke's Method
- 5. Resistance of a Semiconductor Four Probe Method
- 6. Iron Arc Spectra CDS
- 7. Velocity of Sound in liquid- Ultrasonic Diffraction
- 8. Magnetic Susceptibility- Guoy's Method
- 9. Magneto-resistance
- 10. B-H Curve Hysteresis Standard Solenoid
- 11. Brass Arc Spectra CDS
- 12. e/m Millikan's oil drop method
- 13. Polarimeter Specific rotation of optically active substances
- 14. Determination of Planck's constant and verification of inverse square law
- 15. Optical Fiber Numerical aperture, Attenuation, Particle size and λ

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Worsnop, Flint	Advanced Practical Physics	Asia Publishing house	1971
2	Singh S.P.	Advanced Practical Physics	Pragati Prakashan, Meerut	1998

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name:	Name:
Ms.N.Revathi	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Dr. R. Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc. PHY			Programme Title:	Master of Science	
Course Code:	23PPS414			TitleCC XIV:	Batch: Semester:	2023 – 2025 III & IV
Lecture Hrs./Week	4	Tutorial Hrs./Sem.	-	Electronics Lab II	Credits:	3

To know the action and applications of operational amplifier and to become familiarize with 8085 microprocessor

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Gain knowledge and understanding of IC'S and Microprocessor 8085	K2
CO2	Apply the theoretical knowledge and skill to design circuit, make measurements, analyze and interpret the experimental data.	К3
CO3	Enhance the logical thinking and ability by writing simple programmes using 8085 microprocessor and employ the technical expertise for interfacing devices	K4
CO4	Incorporate all the necessary tools and skills to devise practical circuits that perform desired operations	K5
CO5	Ability to Augment the present day requirements in industries and research fields by developing their own firm or fetch an employment as a Design engineer	K6

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	Н	Н	М	М	М	L	Н	Н
CO2	Н	Н	Н	Н	М	М	Н	Н
CO3	Н	Н	Н	Н	М	М	М	L
CO4	Н	Н	Н	Н	Н	Н	М	М
CO5	Н	Н	Н	Н	Н	Н	М	Н

H – High; M – Medium; L – Low

List of Experiments:

- 1. Parameters of Operational amplifier
- 2. Inverting, Non Inverting, Differential amplifier Op Amp
- 3. Schmitt trigger, Scale changer, Phase changer Op Amp
- 4. Constant current source Op Amp
- 5. Microprocessor Addition, Subtraction, Multiplication, Division & Conversion of Number systems
- 6. Simple and Regenerative Comparators Op Amp
- 7. Digital to Analog converter Op Amp
- 8. Adder, Subtractor, Integrator and Differentiator- Op Amp
- 9. Low pass, Band pass & High pass filters Op Amp
- 10. Microprocessor Interfacing I
- 11. Window Detector Op Amp
- 12. Analog to Digital converter Op Amp
- 13. Solving first order simultaneous equations of two variables- Op Amp
- 14. Function Generator Op Amp
- 15. Microprocessor Interfacing II

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Paul B. Zbar, Joseph Sloop	Electricity & Electronics Fundamentals A Text- Lab Manual	McGraw Hill, New Delhi	1983
2	Paul B. Zbar, Malvino, Miller	Electronics: A Text- Lab Manual	McGraw Hill, New Delhi	1997
3	Woollard G.	Practical Electronics	McGraw Hill, New Delhi	1984
4	Subramaniyan S.V.	Experiments In Electronics	Macmillan India Ltd	1983
5	Gayakwad	Operational Amplifier and Linear Integrated Systems	Prentice hall of India Pvt. Ltd, New Delhi	1988
6	-	8085 - μp Trainer kit Manual, Version 4.0	Microsystems Pvt. Ltd	-

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name:	Name:
Dr.T.E.Manjulavalli	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Dr. R. Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:		M.Sc. PHY		Programme Title:	Maste	er of Science
Course Code:		23PPS415		Title CC XV:	Batch: Semester:	2023 – 2025 IV
Lecture Hrs./Week	2	Tutorial Hrs./Sem.	-	Computer Lab in C++	Credits:	2

To acquire basic knowledge in object oriented programming

Course Outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	To remember the basic C++ language	K1 / K2
CO2	To apply the concepts and benefits of OOPs	K3
CO3	To analyze the functions of various C++ operators	K4
CO4	To evaluate the C++ language to solve problems in Physics	K5
CO5	To create the C++ language programs	K6

Mapping

PO/PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5	PO6	PSO1	PSO2
CO1	Н	М	Н	М	М	Н	М	Η
CO2	М	-	М	М	Н	Н	-	М
CO3	М	Н	М	М	М	L	Н	-
CO4	М	L	Н	Н	М	Н	М	М
CO5	Н	М	-	М	Н	-	Н	-

H-High; M-Medium; L-Low

Computer Lab in C++

List of Experiments:

- 1. Class implementation.
- 2. Arrays within a Class.
- 3. Static data members and member function.
- 4. Arrays of Objects
- 5. A function friendly to two classes.
- 6. Simple constructor.
- 7. Overloaded Constructors.
- 8. Implementation of Destructors.
- 9. Overloading Unary operator.
- 10. Overloading Binary operator using member and friend function.
- 11. Multiple inheritance.
- 12. Multilevel inheritance.
- 13. Virtual base class.
- 14. Pointers to derived objects.
- 15. Virtual functions.

REFERENCE BOOKS

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS /EDITION	YEAR OF PUBLICATION
1	Balagurusamy E.	Object Oriented.Programmi ng with C++.	Tata Mc Graw Hill Publication, New Delhi.	2004
2	Venugopal K.P. Rajkumar, Ravishankar T	Mastering C++	Tata Mc Graw Hill Publication, New Delhi	2001
3	Ravichandran D	Programming with C++	Tata Mc Graw Hill Publication, New Delhi.	2003

Designed by	Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name:	Name:
Dr. K.Somasundaram	Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Dr. R. Manicka Chezian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc.	РНҮ		Programme Title:	Master	of Physics
Course Code:	23PPS	5416		TitleCC XVI: Project	Batch: Semester:	2023 – 2025 III & IV
Lecture Hrs./Week or Practical Hrs./Week	3	Tutorial Hrs./Sem.	-		Credits:	6

Verified by HOD	Checked by CDC	Approved by COE
Name:	Name:	Name: Dr. R. Manicka
Dr.T.E.Manjulavalli	Mr. K.Srinivasan	Chezian
Signature:	Signature:	Signature: