M.Sc. Mathematics Programme

Scheme of Examinations

(For candidates admitted from 2012-13 onwards)

Semeste	Course	Course Title	Hour	Dura tion		Max. N	Marks	Cre
r	Code		S	of F		FOF	TT (1	dit
			per	Exa	CA	ESE	Total	Poi
			wee k	m Hrs				nts
			K	(ES				
				(ES E)				
	11PMS01	Algebra	6	3	25	75	100	4
	11PMS02	Real Analysis	6	3	25	75	100	4
Ι	11PMS03	Complex Analysis	6	3	25	75	100	4
	11PMS04	Ordinary Differential Equations	6	3	25	75	100	4
	11PMS05	RDBMS & Oracle	4	3	25	75	100	3
	11PMS06	Programming Lab. in RDBMS &	2	3	40	60	100	2
		ORACLE						
	11PMS07	Subject Viva-Voce I	-	-	-	-	100 #	2
	11PMS08	Linear Algebra	6	3	25	75	100	4
	11PMS09	Measure and Integration	6	3	25	75	100	4
	11PMS10	Partial Differential Equations	6	3	25	75	100	4
II	11PMS11	Mechanics	6	3	25	75	100	4
	11PMS12	Visual Basic	4	3	25	75	100	3
	11PMS13	Programming Lab. in Visual Basic	2	3	40	60	100_	2
	11PMS14	Subject Viva –Voce II	-	-	-	-	100 #	2
	11PMS15	Topology	6	3	25	75	100	4
	11PMS16	Functional Analysis	6	3	25	75	100	4
	11PME17	Elective I- Combinatorics	6	3	25	75	100	4
III	11PME18	Elective II- Graph theory	6	3	25	75	100	4
	11PMS19	JAVA Programming	4	3	25	75	100	3
	11PMS20	Programming Lab in JAVA	2	3	40	60	100	2
	11PMS21	Subject Viva –Voce III	-	-	-	-	100 #	2
	11PMS22	Fluid Dynamics	6	3	25	75	100	4
	11PMS23	Operator Theory	6	3	25	75	100	4
	11PME24	Elective III- Control Theory	6	3	25	75	100	4
IV	11PME25	Elective IV- Stochastic Differential	6	3	25	75	100	4
		Equations		_	_			
	12PMS26	Latex	4	3	25	75	100	2
	12PMS27	Programming Lab in Latex	2	3	40	60	100	1
	12PMS28	Subject Viva –Voce IV	-	-	-	-	100 #	2

Total:

90

2400

- 50 Marks (Internal) + 50 Marks (External) = 100 Marks T - Theory P- Practical

- * In the IV Semester Students are given two choices viz.,
- (i) 5 Papers and a Subject Viva-Voce Examination.
- (ii) 2 Papers, a Subject Viva -Voce Examination and a Major Project (Instead of any of three elective papers).

Students admitted from 2011 onwards may opt any one of the two choices given above.

General Question Pattern

Papers

Max Marks:	Internal : 25	External	75
100			
Section	Pattern	Mark	Total
Part A	One word question (10 Questions)	10 * 1	10
Part B	Either (or) choice (5 Questions)	5 * 5	25
Part C	Either (or) choice (5 Questions)	5* 8	40
		Total	: 75

List of Electives

- 1. Combinatorics
- 2. Stochastic Differential Equations
- 3. Magneto Hydro Dynamics
- 4. Control Theory
- 5. Differential Geometry
- 6. Algebraic Number Theory
- 7. Algebraic Topology
- 8. Fuzzy Logic and Fuzzy Sets
- 9. Graph Theory
- 10. Cryptography

Department	Mathematics	
Course	M.Sc	Effective From the Year : 2011
Subject code :		
	ALGEBRA	<u>a</u> 11. 4
Hrs/ Week	6	Credits : 4
Objectives	To enable the students to learn several advanced concepts in alg have wider applications in higher analysis, topology, theory of geometry, physics and chemistry etc. This paper is designed in	numbers,
	that a student can realize the importance of the topics like Sylov	w's
	theorems, polynomial rings, extension of fields and Galois theorem	ry.
Unit	Contents	Hrs
Unit-I	Sylow's Theorem and Inner Product Spaces.	15 hours
Unit-II	Polynomial Rings, Polynomials over the Rational field and	16 hours
	Polynomial Rings over Commutative Rings.	
Unit-III	Extension Fields and Finite Fields.	14 hours
Unit-IV	Roots of Polynomials and More about roots.	16 hours
Unit-V	The Elements of Galois theory.	14 hours
Text Book	Herstein, I.N. Topics in Algebra. 2 nd Edition. New Delhi. Vikas	Publishing
	Company Private Limited.	
Reference	1. John B. Fraleigh. A First Course in Abstract Algebra. New	Delhi:
Books	Narosa Publishing House.	
	2. Surjeet Singh, Qazi Zameeruddin. Modern Algebra. Delhi:	Vikas
	Publishing House Pvt. Ltd.	
	3. Bhattaracharya, P.B., Jain, K. and Nagpaul, S.R. Basic Abstract	
	Algebra. New York: Cambridge University Press.	

Department	Mathematics	
Course	F	ffective rom the ear : 2011
Subject code : 1		
	REAL ANALYSIS	redits : 4
Hrs/ Week Objectives	6 C The aim of this syllabus is to aid learners in attaining a broad under	
objectives	analysis techniques that are the basic stepping-stones to contemporary	-
	is assumed that learners are familiar with the subject matter of the und	•
	analysis courses. This syllabus enables the learners to learn and un	
	depth sequence and series of functions, special function, functions	of several
	variables and differential forms.	
Unit	Contents	Hrs
Unit-I	Sequences and Series of functions	
	Uniform convergence, Uniform convergence and continuity,	
	Uniform convergence and integration, Uniform convergence and	
	differentiation, Equicontinuous families of functions, The Stone-	
	Weierstrass theorem.	15 hours
Unit-II	Some special functions	
	Power series, The Exponential and Logarithmic functions, The	
	Trigonometric functions, Fourier series.	14 hours
Unit-III	Functions of several variables	
Cint-III	Linear transformations, Differentiation, The contraction	
	principle, The inverse function theorem, Determinants, Derivatives of	
	higher order.	16 hours
Unit-IV	Integration of differential forms	
	Integration, Primitive mappings, Partitions of unity,	
	Differential forms	15 hours
Unit-V	Integration of differential forms (contd.,)	
	Simplexes and Chains, Stoke's theorem, closed forms and	
	exact forms, Vector analysis	15 hours
Text Book	Walter Rudin. (1976). Principles of Mathematical Analysis. This	d Edition.
	McGraw – Hill.Inc.	
Reference	Tom. M. Apostol. (Reprint 1990). Mathematical Analysis. Narosa	Publishing
Book	House.	

Department	Mathematics		
Course	M.Sc	Effective From the Year : 2011	
Subject code	: 11 PMS 03	1 cai • 2011	
Title	: COMPLEX ANALYSIS		
Hrs/ Week	6	Credits : 4	
Objectives	This paper provides a transition from undergraduate eler	mentary results to	
	postgraduate advanced topics and enables the learners		
	1) to understand and to evaluate the definite in	tegrals in an easy	
	and effective way using calculus of residues		
	2) to get a deeper understanding in the advance	ced topics such as	
	harmonic functions, Infinite products and	Normal families.	
	Also it motivates the learners to take up resea	arch in the field of	
	Complex Analysis.		
Unit	Contents Hrs		
Unit-I	Laurent Series and the Residue Theorem:		
	Classification of Singularities - Laurent		
	Series - Evaluation of Real Integrals.	15 hours	
Unit-II	Harmonic Functions:		
	Comparison with Analytic Functions -		
	Poisson Integral Formula.	14 hours	
Unit-III	Positive Harmonic functions and Conformal mapping:		
	Positive Harmonic functions - Conformal		
	mapping.	14 hours	
Unit-IV	Normal Families and Riemann Mapping Theorem:		
	Normal Families - Riemann Mapping		
	Theorem	16 hours	
Unit-V	Entire and Meromorphic Functions:		
	Infinite Products - Weierstrass's Product		
	Theorem - Mittag Leffler's Theorem.	16 hours	

Text Book	Herb Silverman, Houghton Mifflin Company, Boston. (1975). Complex
	Variables.
Reference	1. Lars V.Ahlfors. (1979). Complex Analysis. Third Edition. Mc Graw-
Books	Hill book company.
	2. Ponnusamy, S. (2005). Foundations of Complex Analysis. Second
	Edition. Narosa Publishing house.

Department	Mathematics		
Course	M.Sc	Effective From the Year: 2011	
Subject code	: 11 PMS 04		
Title	: ORDINARY DIFFERENTIAL EQUATIONS		
Hrs/ Week	6	Credits : 4	
Objectives	Differential equations play an important role in science, engineering and		
	social sciences. Many phenomena in these branches of know	ledge are	
	interpreted in terms of differential equations and their application	ations. This	
	paper helps the students to		
	i. learn linear equations and systems,		
	ii. study the existence and uniqueness of solution	ns of initial	
	value problems,		
	iii. find solution by various methods,		
	iv. understand the results of oscillation and boundary value		
	problems.		
Unit	Contents	Hrs	
Unit-I	Linear differential equations of higher order	15 hours	
Unit-II	Solutions in power series (Except 3.1)	14 hours	
Unit-III	Systems of Linear Differential Equations (Except 4.1)	15 hours	
Unit-IV	Existence and uniqueness of solutions; and Oscillations of	2	
	second order equations (Except 5.5 to 5.8 & 6.6)	16 hours	
Unit-V	Boundary Value problems (Except 7.4)	15 hours	
Text Book	Deo, S.G. and Ragavendran, V. (1980). Ordinary Differential Equations		
	and Stability Theory. TATA Mc GRAW-HILL Publishing Company Ltd.		
Reference Book	 Martin H.(1985), Ordinary Differential Equations, Tata McGraw Hill Publishing company Limited. Coddington E. A and Levinson N.,(1955), Theory of Ordinary Differential Equations, McGraw Hill, New York. 		

Department	Mathematics	
Course	M.Sc H	ffective rom the ear : 2011
Subject code		
Title Hrs/ Week	: RDBMS AND ORACLE 4 C	Credits : 3
Objectives	The aim of this paper is	
	(i) to understand the basic concepts of DBMS and RDI	BMS
	(ii) to acquire knowledge in SQL and PL/SQL	
	(iii) to gain knowledge and develop skills to apply the al	pove in the
	IT field.	_
Unit	Contents	Hrs
Unit-I	Introduction - Purpose of Database Systems -View of Data -	
	Data Models -Database Languages - Transaction Management	
	- Storage Management - Database Administrator -Database	9 hours
	users -Overall System Structure.	
Unit-II	Entity - Relational Model (E - R Model)-Basic concepts -	
	Mapping Constraints – Keys- Entity Relationship Diagram-	
	Design Phases - Reduction of E - R Diagram to tables.	
	Relational Model - Structure of Relational Databases	
	- Relational Algebra - Extended Relational Algebra Operations	
	- Modification of the Database.	11 hours
Unit-III	Introduction to Oracle - Tools of Oracle - Oracle Internal	
	Datatypes - Division of SQL - Data Definition Language -	
	Data Manipulation Language - Transaction Control and Data	
	Control Language.	
	Operators in SQL * Plus - Arithmetic Operators,	
	Comparison Operators and Logical Operators -SQL * Plus	10 hours
	Functions- Single Row Functions -Group Functions.	
Unit-IV	Set Operators -Join Concept - Usage of Sub-queries -	
	Constraints - Locks - Types of Locks. Database Objects-	
	Tables - Synonym - Sequences - View - Index.	

	SQL*Plus formatting commands - Compute		
	Commands - Title Commands - Setting Page Dimensions -		
	Storing and Printing Query Results.	11 hours	
Unit-V	Introduction to PL/SQL - Advantages of PL/SQL -		
	Architecture of PL/SQL - PL/SQL block - Datatypes - Control		
	Structures -Concept of Error Handling and Exceptions -Cursor		
	Management -Sub-programs and Packages - Database Triggers	9 hours	
	and Built in Packages.		
Text Books	1. Henry F. Korth and Sundharasan, S. Database system concept.		
	2. Ivan Bayross. (1997). Oracle. BPB Publications.		
Reference	1. Nilesh Shah. (2011), Database Systems using ORACLE. PH	I learning	
Books	Pvt. Ltd.		
	2. Ivan Bayross. (2005). SQL, PL/SQL The programming la	nguage of	
	oracle. BPB Publications.		

Department	Mathematics	
Course	M.Sc	Effective From the
Subject code	• 11 PMS 06	Year : 2011
Title	: PROGRAMMING LAB IN RDBMS AND ORACLE	
Hrs/ Week	2	Credits : 2
1 ~	List of Programs	
	a table and working with DDL commands	
	ng with DML commands	
	ng with DCL commands	
4. Worki	ng with TCL commands	
5. SQL *	Plus Functions	
6. SQL *	Plus operators	
7. Set Op	perators	
8. Join C	oncept	
9. Usage	of Sub-queries	
10. Constr	raints	
11. sequer	nces	
12. Views		
13. Indexs	5	
14. SQL*1	Plus Formatting Commands	
PL/SQL	Commands	
15. Contro	ol Structure – Conditional Control if thenelse	
16. Contro	ol Structure – Conditional Control if thenelsif	
17. Contro	ol Structure – Iterative Control Simple loop	
18. Contro	ol Structure – Iterative Control While loop	
19. Contro	ol Structure – Iterative Control For loop	
20. Displa	y origin and destination of a route	
21. Check	ing price value or not using exception	
22. Passer	ger details using cursor management	

Department	Mathematics	
Course	M.Sc	Effective From the Year : 2011
Subject code		
Title Hrs/ Week	: LINEAR ALGEBRA 6	Credits : 4
Objectives	The aim of the syllabus is	01001000
	• To provide the students with a good understanding the	e concepts and
	methods described in the syllabus.	
	• To help students develop the ability to solve problem	ns using linear
	Algebra.	
	• To connect Linear Algebra to other fields both with	in and without
	Mathematics.	
	• To develop abstract and critical reasoning by studying lo	gical proofs and
	the axiomatic method as applied in the Linear Algebra.	
Unit	Contents	Hrs
Unit-I	Elementary Canonical Forms	
	 Characteristic Values 	
	 Annihilating Polynomials 	
	 Invariant Subspaces 	15 hours
Unit-II	 Simultaneous Triangulation; Simultaneous 	
	Diagonalization	
	 Direct Sum Decompositions 	
	 Invariant Direct Sums 	16 hours
Unit-III	The Rational and Jordan Forms	
	 Cyclic Subspaces and Annihilators 	
	 Cyclic Decompositions and the Rational 	
	Form	14 hours
Unit-IV	The Jordan Form	
	 Computations of Invariant Factors 	15 hours
Unit-V	Bilinear Forms	

	 Bilinear Forms 		
	 Symmetric Bilinear Forms 	15 hours	
Text Book	Kenneth Hoffman and Ray Kunge. (2010). <i>Linear Algebra</i> . Second Edition. New Delhi: PHI learning Private Ltd.		
Reference Books	 I. N. Herstein. (1981). <i>Topics in Algebra</i>. Vikas publishing Ltd.,. S. Kumaresan . (2001). <i>Linear Algebra</i>. Prentice-Hall of 3. Serge Lang. (2005). <i>Introduction to linear algebra</i>. Spring 	India.	

Department	Mathematics	
Course	M.Sc	Effective From the Year: 2011
Subject code		
Title	: MEASURE AND INTEGRATION	
Hrs/ Week Objectives	6 This course is designed to provide the learners	Credits: 4
Objectives		
	i. an introduction to outermeasure, measurable sets, a functions	measurable
	ii. a solid foundation in the Labegue integration theorem	y
	iii. an opportunity to study and analysis general conve	ergence
	theorems, Hahn Decomposition theorem, Jordan	
	Decomposition theorem, Radon-Nikodym theorem	n and L^{P}
	spaces.	
Unit	Contents	Hrs
Unit-I	Lebesgue Measure:	
	Introduction, Outer measure, Measurable sets and Lebesgue	
	measure, Measurable functions, and Littlewood's three	14 hours
	principles.	
Unit-II	The Lebesgue Integral:	
	The Lebesgue integral of a bounded function over a set of finite	
	measure, The integral of a non negative function, The general	
	Lebesgue integral and Convergence in measure.	16 hours
Unit-III	Differentiation and Integration:	
	Differentiation of monotone functions, Functions of bounded	
	variation, Differentiation of an integral and absolute continuity.	15 hours
Unit-IV	Measure and Integration:	
	Measure spaces, Measurable functions and Integration and	
	General Convergence theorems.	14 hours
Unit-V	Radon-Nikodym Theorem:	

	Signed measures, The Radon-Nikodym Theorem and The L ^p 16 hours
	spaces.
Text Book	Real Analysis, H.L.Royden, 3 rd Edition, Macmillan Publishing Company, New
	York.
Reference Books	 Walter Rudin. (1976). Principles of Mathematical Analysis. Third Edition. New York: McGraw – Hill.Inc.
	2. De Barra, G. (1981). <i>Measure Theory and Integration</i> , New Delhi: Wiley
	Eastern.

Department	Mathematics	
Course	M.Sc	Effective From the Year : 2011
Subject code	: 11 PMS 10	1 cai : 2011
Title	: PARTIAL DIFFERENTIAL EQUATIONS	
Hrs/ Week	6	Credits : 4
Objectives	On completion of the course the students are expected to have	re
	i. Obtained solid introduction to nonlinear and differential equations.	linear partial
	ii. Understood Charpit's method, Jacobi method,	method of
	seperation of variables, method of integral transforms	S.
	iii. a good understanding of Laplace equation, wa	ave equation,
	diffusion equations and a good knowledge of	their various
	applications in mathematics and other fields.	
Unit	Contents	Hrs
Unit-I	Non-linear partial differential equations of the first order,	
	Compatible systems of first order equations, Charpit's	
	Method, Special types of first order equations and Jacobi's	
	Method.	15 hours
Unit-II	Linear partial differential equations with constant co-	
	efficients and Equations with variable coefficients.	14 hours
Unit-III	Method of separation of variables and the method of	
	integral transforms.	14 hours
Unit-IV	Elementary solutions of Laplace's equations, Families of	
	equi-potential surfaces, Boundary value problems,	
	Separation of variables and Problems with axial symmetry.	16 hours
Unit-V	Elementary solutions of one dimensional wave equation,	
	Vibrating membranes: Application of calculus of variations,	
	Elementary solutions of diffusion equation and Separation	
	of variables.	16 hours
Text Book	Ian Sneddon. Elementary Partial Differential Equations.	1
Reference	1. Michael Renardy and Robert C. Rogers. (2004). An In	ntroduction to
Books	Partial Differential Equations. Second Edition. Springer.	
	2. Robert C. Mc Owen. (2004). Partial Differential Equation	ions, Methods
	and Applications. Second Edition. Pearson Education, Inc.	

Department	Mathematics	
Course	M.Sc	Effective From the Year : 2011
Subject code	e : 11 PMS 11	
Title	: MECHANICS	<u> </u>
Hrs/ Week Objectives	6 On completion of the course the students are expected to hav	Credits : 4
o sjeen ves	i. Studied and understood Lagrange's, Hamilton's equa	
	various simple but important results related to them.	
		ry
	iii. grasped the basics of relativity	
Unit	Contents	Hrs
Unit-I	LAGRANGE'S EQUATIONS	
	Derivation of Lagrange's equations, Examples and Integrals	
	of the Motion.	15 hours
Unit-II	HAMILTON'S EQUATIONS	
	Hamilton's Principle, Hamilton's Equations and Other	
	Variational Principles.	15 hours
Unit-III	HAMILTON-JACOBI THEORY	
	Hamilton's Principal Function, The Hamilton-Jacobi	
	Equation and Separability.	15 hours
Unit-IV	INTRODUCTION TO RELATIVITY	
	Introduction and Relativistic Kinematics.	15 hours
Unit-V	INTRODUCTION TO RELATIVITY	
	Relativistic Dynamics and Accelerated Systems.	15 hours
Text Book	Donald T. Greenwood. (1990). Classical Dynamics. New De	elhi: Prentice-
	Hall of India.	
Reference	1. Goldstein, H. (1950). Classical Mechanics. Addis	on Wesley
Books	Press, Inc.	
	2. Synge, J.L. and Griffith, B.A. (1959). Principles of	f Mechanics.
	Third Edition. McGraw-Hill company.	
	3. Robert Resnick. <i>Introduction to special Relativity</i> . Wiley	
	Eastern Limited.	- J

Department	Mathematics	
Course		Effective
		From the Year : 2011
Subject code		
Title Hrs/ Week	: VISUAL BASIC 4	Credits : 3
Objectives	Visual Basic is one of the most powerful Languages in	
	computer science. This paper enables the students	
	i. to understand basic concepts, notions and	visual basic
	environment	
	ii. to enhance their skills in developing graphics	
	iii. to write simple visual basic programs.	
Unit	Contents	Hrs
Unit-I	Getting started with Visual Basic:	
	Introduction to Visual Basic, Visual Basic programming	
	environment, properties, methods and events, Getting	
	started with an application, Adding code for the program,	
	Creating an executable file, Visual Basic programming	
	fundamentals, Modules, Data types, Variables Public VS	
	Local variables Static variables, Procedures, Sub	
	procedures, Function procedures, Property procedures,	
	Control structures IfThen, Selectcase statement, Do	
	while loop, Do loop while structure, the fornext	
	loop, Exitfor and Exit Do statement.	10 hours
Unit-II	Working with controls, menus:	
	Creating and using controls, Control categories, Tab index	
	property of controls, Using option button control, Using List	
	box and combo box controls, using scroll bar control,	
	Working with control arrays, creating control arrays at	
	design time, adding a control arrays at runtime, control	
	array application, events in the control array application,	
	Menu interface, using the menu editor, writing a program,	
	writing code for menu controls, adding a separator bar and	
	shortcut keys, Menus, Pop-up, making menu controls	

	invisible, using check marks and menu control arrays.	10 hours
Unit-III	Mouse events and dialog boxes, and Graphics:	
	Mouse events, positioning a control, graphical mouse	
	application, mouse mouse application, dragging and	
	dropping, Dialog boxes, model and modeless dialog boxes,	
	predefined dialog boxes using input box function custom	
	dialog control, using the command dialog control, Graphics	
	for application, fundamentals of graphics, using graphical	
	controls, line control, shape control, image control, adding	
	pictures, removing pictures, moving and sizing pictures,	
	using graphics methods.	10 hours
Unit-IV	Objects and classes:	
	Introduction to objects, encapsulation, polymorphism,	
	object variables, the new keyword, Working with objects,	
	controlling objects with their properties, setting property	
	values, getting property values, performing actions with	
	methods, using methods in code, specific and generic object	
	types, forms as objects, constructors and destructors, classes	
	and class modules, creating a new class modules steps to	
	create a class module, coding included in the code window	
	of the class module, using the thing object and running the	
	project.	10 hours
Unit-V	MDI and GRID, Files system controls:	
	Multiple document interface, Creating an MDI application,	
	Adjusting the textbox, Creating a toolbox, Creating a Status	
	bar, Using the grid control, Changing the cell width and	
	cell height, Entering the values in the columns, Using	
	Graphics in grid control, Scroll bars of the grid control, File	
	system controls, Accessing files, Random access files,	
	Opening the random access file, Sequential access files,	
	Binary access files and Interfacing with Windows working	
	with the active control property.	10 hours
Text &	1. Gary Cornell. Visual Basic 5.0 from the ground up.	
Reference Books	2. Martin L. Rinehart. Visual Basic 5.0 Power OOP.	

De	partment	Mathematics			
Co	ourse	M.Sc	Effective		
			From the		
	Year : 2011				
	0	: 11 PMS 13			
Tit		: PROGRAMMING LAB IN VISUAL BASIC			
Hr	s/ Week	2	Credits : 2		
		List of programs:			
1.	Write a pr	ogram to prepare a statement of marks.			
2.	Write a pr	ogram to draw the curves.			
3.	3. Write a program to calculate the sales bill.				
4.	4. Write a program to create file options using common dialog box.				
5.	5. Write a program to calculate the pay slip.				
6.	Write a pr	ogram to design a calculator using control array.			
7.	Write a pr	ogram to calculate the conversion of units using menu editor.			
8.	. Write a program for the admission to professional courses using scrollbar and options				
	buttons.				
9.	Write a pr	ogram to calculate arithmetic functions using menu editor.			
10.	Write a pr	ogram to design the admission system using input screen.			

Department	Mathematics	
Course	M.Sc	Effective From the Year : 2011
Subject code		
Title Hrs/ Week	: TOPOLOGY 6	Credits : 4
1115/ WUUK	0	Cicuits . 4
Objectives	Topology is one of the basic disciplines of pure mathematics	and concerns
	more on logical precision. Its ideas and methods have transfe	ormed large
	parts of geometry and analysis almost beyond recognition. It	has also
	greatly stimulated the growth of abstract algebra. The course	content of
	this paper serves to lay foundation for further study in analys	sis, geometric
	and algebraic topology.	
Unit	Contents	Hrs
Unit-I	Topological spaces, Basis for a topology, The order	
	topology, The product topology on X ×Y, The subspace	;
	topology, Closed sets and Limit points	15 hours
Unit-II	Continuous functions, The metric topology, The metric	
	topology (Continued)	14 hours
Unit-III	Connected spaces, Connected subspaces of the real line,	,
	Components and Local Connectedness, Compact spaces	15 hours
Unit-IV	The Separation axioms, Normal spaces, The	;
	Urysohn lemma, The Urysohn Metrization Theorem, The	;
	Tietz Extension theorem	16 hours
Unit-V	The Tychonoff theorem, The Stone-Cech Compactification,	
	Metrization theorems and Para Compactness, The Nagata-	
	Smirnov Metrization theorem, The Smirnov Metrization	
	Theorem, Complete metric spaces	15 hours
Text Book	Munkres, J.R. (2000). Topology. Second Edition. Pearson E	ducation, Inc.
Reference Books	 Simmons, G.F. (1963). Introduction to topology and modern analysis. Tata Mc Graw Hill book company, INC. Dugundji, J. (1975). Topology. Prentice Hall of India. John L. Kelly. (1968). General Topology. Van Nostrand Reinhold Company. Stephen Willard. (1970). General Topology. Addision Wesley. Benjamin T.sims. (1976). Fundamentals of Topology. Macmillan Publishing Company. 	

	Mathematics	
Course	F	ffective from the fear : 2011
•	e: 11 PMS 16	
Title Hrs/ Week	: FUNCTIONAL ANALYSIS	Credits : 4
Objectives	On Completion of the course the students are expected	
U	i. to have a clear understanding of Normed linear spaces	. Banach spaces.
	Hilbert spaces and $\beta(X,Y)$,
	ii. to understand some important, but simple to follow,	theorems such as best
	approximation theorems, Projection theorem and	
	theorem	1
	iii. to have full grasp of the three important theorems o	f Functional Analysis
	namely Hahn-Banach Theorem, The Uniform Bound	dedness Principle and
Closed Graph Theorem		
	iv. to apply the concepts and results covered in the	course to Numerical
	Analysis and Operator equations.	
T;4		
	Contents	Hrs
Unit Unit-I	Contents Norm on a Linear Space	Hrs
	Norm on a Linear Space	Hrs
		Hrs
	Norm on a Linear Space Examples of Normed Linear Spaces Semi norms and Quotient Spaces	Hrs
	Norm on a Linear Space Examples of Normed Linear Spaces Semi norms and Quotient Spaces Product Space and Graph Norm	Hrs
	Norm on a Linear Space Examples of Normed Linear Spaces Semi norms and Quotient Spaces	
Unit-I	Norm on a Linear Space Examples of Normed Linear Spaces Semi norms and Quotient Spaces Product Space and Graph Norm Semi – inner Product and Sesquilinear Form	Hrs 15 hours
	Norm on a Linear Space Examples of Normed Linear Spaces Semi norms and Quotient Spaces Product Space and Graph Norm Semi – inner Product and Sesquilinear Form	
Unit-I	Norm on a Linear Space Examples of Normed Linear Spaces Semi norms and Quotient Spaces Product Space and Graph Norm Semi – inner Product and Sesquilinear Form Banach Spaces (Omit Example 2.7 (VI) P.No .83, 84).	
Unit-I	Norm on a Linear Space Examples of Normed Linear Spaces Semi norms and Quotient Spaces Product Space and Graph Norm Semi – inner Product and Sesquilinear Form Banach Spaces (Omit Example 2.7 (VI) P.No .83, 84). Completion of Normed Linear Spaces	
Unit-I	Norm on a Linear Space Examples of Normed Linear Spaces Semi norms and Quotient Spaces Product Space and Graph Norm Semi – inner Product and Sesquilinear Form Banach Spaces (Omit Example 2.7 (VI) P.No .83, 84). Completion of Normed Linear Spaces Some Properties of Banach Spaces	
Unit-I	Norm on a Linear Space Examples of Normed Linear Spaces Semi norms and Quotient Spaces Product Space and Graph Norm Semi – inner Product and Sesquilinear Form Banach Spaces (Omit Example 2.7 (VI) P.No .83, 84). Completion of Normed Linear Spaces Some Properties of Banach Spaces Baire Category Theorem (statement only)	
Unit-I	Norm on a Linear SpaceExamples of Normed Linear SpacesSemi norms and Quotient SpacesProduct Space and Graph NormSemi – inner Product and Sesquilinear FormBanach Spaces (Omit Example 2.7 (VI) P.No .83, 84).Completion of Normed Linear SpacesSome Properties of Banach SpacesBaire Category Theorem (statement only)Schauder Basis and Separability	

Image: State of the state	Bounded Operators (Omit Example 3.1(viii) - P.No. 130) Some Basic Results and Examples The Space β (X, Y) Norm on β (X, Y) (Omit Example 3.3 (x) - P.No.142-143 and omit some estimates for norms of certain operators P.No.144-148) Riesz Representation Theorem Completeness of β (X, Y) Bessel's Inequality	
Unit-IV Unit-V Text Book Thamba	The Space β (X, Y) Norm on β (X,Y) (Omit Example 3.3 (x) - P.No.142-143 and omit some estimates for norms of certain operators P.No.144-148) Riesz Representation Theorem Completeness of β (X, Y)	
Unit-IV Unit-V Text Book Thamba	Norm on β (X,Y) (Omit Example 3.3 (x) - P.No.142-143 and omit some estimates for norms of certain operators P.No.144-148) Riesz Representation Theorem Completeness of β (X, Y)	
Unit-IV Unit-V Text Book Thamba	and omit some estimates for norms of certain operators P.No.144-148) Riesz Representation Theorem Completeness of β (X, Y)	
Unit-IV Unit-V Text Book Thamba	P.No.144-148) Riesz Representation Theorem Completeness of β (X, Y)	
Unit-IV Unit-V Text Book Thamba	Riesz Representation Theorem Completeness of β (X, Y)	
Unit-IV Unit-V Text Book Thamba	Completeness of β (X, Y)	
Unit-IV Unit-V Text Book Thamba	-	
Unit-IV Unit-V Text Book Thamba	Bessel's Inequality	
Unit-IV Unit-V Text Book Thamba		
Unit-IV Unit-V Text Book Thamba	Fourier Expansion and Parseval's Formula	16 hours
Unit-V Text Book Thamba	Riesz-Fischer Theorem	10 110013
Unit-V Text Book Thamba	Hahn-Banach Theorem and Its Consequences	
Unit-V Text Book Thamba	The Extension Theorem	
Unit-V Text Book Thamba	Consequences	
Unit-V Text Book Thamba	On Uniqueness of Extension	14 hours
Text Book Thamba	Separation Theorem	
Text Book Thamba	Uniform Boundedness Principle	
Text Book Thamba	The Theorem and Its Consequences	
Text Book Thamba	Closed Graph Theorem and Its Consequences	
Text Book Thamba	Closed Graph Theorem	
Text Book Thamba	Bounded Inverse Theorem	
Text Book Thamba	Open Mapping Theorem	14 hours
Thamba	A Stability Result for Operator Equations	
Prentice	an Nair, M. (2002). Functional Analysis - A First Co	ourse. New Delhi
	e Hall of India Pvt. Ltd.	
Reference 1. Lim	naye, B.V. (1981). Functional Analysis. New Delhi: Wiley	Eastern.
BOOKS		
Z. bin Mc	mons, G.F. (1963). Introduction to Topology and Modern	

Department	Mathematics	
Course	M.Sc Eff	ective
		m the a r : 2011
Subject code		
Title	: COMBINATORICS	Creatite e A
Hrs/ Week Objectives	6 On completion of the course the learners are expected	Credits : 4
	i. to have gained a working knowledge of the basic ideas ar	nd techniques of the
	subject	1
	ii. to handle various aspects of assignment problems, begin	ing with the
	famous result of Philip Hall, and on to various application	-
	iii. to deal with configurations	
	iv. to have a sound knowledge of block designs and its appli	cations to error
	correcting codes	
	v. to understand the Steiner system $S(5, 8, 24)$ and the const	ruction of Leech
	Lattice in 24 dimensions.	
Unit	Contents	Hrs
Unit-I	Introduction to basic ideas, Selections and binomial coefficient	s,
	Permutations, Ordered selections, Unordered selections, Furthe	er
	remarks on the binomial theorem and Miscellaneous	15 hours
Unit-II	Pairings problems: Pairings within a set, Pairings between set	s,
	an optimal assignment problem and Gale's optimal assignment	nt
	problem.	14 hours
Unit-III	Recurrence: Some miscellaneous problems, Fibonacci typ	be l
	relations, Using generating Functions, Miscellaneous method	ls
	and Counting simple electrical networks.	16 hours
Unit-IV	The Inclusion, Exclusion principle: The principle, The Roc	k
	Polynomials, Steiner systems and sphere packings: Introductor	y
	remarks, Steiner systems S (5, 8, 24) and Leech's lattice.	16 hours
Unit-V	Block Designs and Error correcting codes: Block design	s,
	Square block designs, Hadamard configurations and Erro	or
	correcting codes.	14 hours
Text Book	Ian Anderson. (1974). A first course in combinatorial Mathemati	cs. Oxford
	University press.	

Reference Books	 Krishnamurthy, V. (1986). <i>Combinatorics</i>. New Delhi: Affiliated east west press pvt ltd.
	2. Balakrishnan, V.K. and Balakrishnan, V. (1984). Schaum's outline of
	Combinatorics. Mcgraw hill publishers.

CourseM.ScEffective From the Year : 201Subject code: 11 PME 18 : GRAPH THEORY:Hrs/ Week6Credits : 4ObjectivesGraph theory is a major area of Combinatorics. In this Course v introduce the learners to some basic topics in graph theory.UnitContentsHrsUnitGraphs and Subgraphs:Graphs and simple graphs, Graph Isomorphism, The incidence and adjacency matrices, subgraphs, vertex degrees, path and Connection and Cycles. Trees: Trees, Cut edges and bonds, Cut vertices and Cayley's formula.Unit-IIConnectivity: Connectivity and Blocks. Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles.Unit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Directed paths and Kuratowski's theorem. Directed Graphs: Directed graphs, Directed paths and Kuratowski's theorem.	Department	Mathematics		
Subject code : 11 PME 18 : GRAPH THEORYYear : 201Title: GRAPH THEORYHrs/ Week6ObjectivesGraph theory is a major area of Combinatorics. In this Course vintroduce the learners to some basic topics in graph theory.UnitContentsUnit-IGraphs and Subgraphs: Graphs and simple graphs, Graph Isomorphism, The incidence and adjacency matrices, subgraphs, vertex degrees, path and Connection and Cycles. Trees: Trees, Cut edges and bonds, Cut vertices and Cayley's formula.Unit-IIConnectivity: Connectivity and Blocks. Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles.Unit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.Unit-IVEdge Colourings: Edge chromatic number and Vizing's theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.Unit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.	Course	M.Sc		
Title: GRAPH THEORYHrs/ Week6Credits : 4ObjectivesGraph theory is a major area of Combinatorics. In this Course vintroduce the learners to some basic topics in graph theory.UnitContentsUnitGraphs and Subgraphs:Graphs and simple graphs, Graph Isomorphism, The incidence and adjacency matrices, subgraphs, vertex degrees, path and Connection and Cycles. Trees: Trees, Cut edges and bonds, Cut vertices and Cayley's formula.Unit-IIConnectivity: Connectivity and Blocks. Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles.Unit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.Unit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.Unit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.			Year : 2011	
Hrs/ Week 6 Credits : 4 Objectives Graph theory is a major area of Combinatorics. In this Course vintroduce the learners to some basic topics in graph theory. Unit Contents Hrs Unit Graphs and Subgraphs: Hrs Graphs and simple graphs, Graph Isomorphism, The incidence and adjacency matrices, subgraphs, vertex degrees, path and Connection and Cycles. Trees: Trees, Cut edges and bonds, Cut vertices and Cayley's formula. Unit-II Connectivity: Connectivity: Connectivity and Blocks. Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles. Unit-III Matchings: Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets. 15 hours Unit-IV Edge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number. 16 hours Unit-V Planar Graphs: Plana graphs, Dual graphs, Euler's formula and Kuratowski's theorem.	•	Subject code : 11 PME 18		
Objectives Graph theory is a major area of Combinatorics. In this Course vintroduce the learners to some basic topics in graph theory. Unit Contents Hrs Unit-I Graphs and Subgraphs: Hrs Graphs and simple graphs, Graph Isomorphism, The incidence and adjacency matrices, subgraphs, vertex degrees, path and Connection and Cycles. Hrs Unit-II Contents Hrs Unit-II Connectivity: 15 hours Unit-II Connectivity: 15 hours Unit-II Connectivity: 14 hours Unit-II Matchings: Matchings and coverings in bipartite graphs and perfect matchings. 14 hours Unit-III Matchings: Matchings. 15 hours Unit-IV Edge Colourings: 15 hours Unit-IV Edge Colourings: 15 hours Unit-IV Edge chromatic number and Vizing's theorem. 16 hours Vertex Colourings: Chromatic number. 16 hours Unit-V Planar Graphs: 16 hours			Credits : 4	
UnitContentsHrsUnit-IGraphs and Subgraphs: Graphs and simple graphs, Graph Isomorphism, The incidence and adjacency matrices, subgraphs, vertex degrees, path and Connection and Cycles. Trees: Trees, Cut edges and bonds, Cut vertices and Cayley's formula.15 hoursUnit-IIConnectivity: Connectivity and Blocks. Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles.14 hoursUnit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.16 hours		-		
Unit-IGraphs and Subgraphs: Graphs and simple graphs, Graph Isomorphism, The incidence and adjacency matrices, subgraphs, vertex degrees, path and Connection and Cycles. Trees: Trees, Cut edges and bonds, Cut vertices and Cayley's formula.15 hoursUnit-IIConnectivity: Connectivity and Blocks. Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles.14 hoursUnit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-IVPlana Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.17		introduce the learners to some basic topics in graph theory.		
Graphs and simple graphs, Graph Isomorphism, The incidence and adjacency matrices, subgraphs, vertex degrees, path and Connection and Cycles. Trees: Trees, Cut edges and bonds, Cut vertices and Cayley's formula.15 hoursUnit-IIConnectivity: Connectivity and Blocks. Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles.14 hoursUnit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-IVPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.17	Unit	Contents	Hrs	
Initial and adjacency matrices, subgraphs, vertex degrees, path and Connection and Cycles. Trees: Trees, Cut edges and bonds, Cut vertices and Cayley's formula.15 hoursUnit-IIConnectivity: Connectivity and Blocks. Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles.14 hoursUnit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-IVPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.16 hours	Unit-I	Graphs and Subgraphs:		
degrees, path and Connection and Cycles.IterationTrees: Trees, Cut edges and bonds, Cut vertices and Cayley's formula.15 hoursUnit-IIConnectivity: Connectivity and Blocks.15 hoursEuler Tours and Hamilton cycles: Euler tours and Hamilton cycles.14 hoursUnit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-IVPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.17		Graphs and simple graphs, Graph Isomorphism, The	e	
Trees: Trees, Cut edges and bonds, Cut vertices and Cayley's formula.15 hoursUnit-IIConnectivity: Connectivity and Blocks. Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles.14 hoursUnit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.17		incidence and adjacency matrices, subgraphs, vertex	x	
Cayley's formula.15 hoursUnit-IIConnectivity: Connectivity and Blocks. Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles.14 hoursUnit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.15 hours		degrees, path and Connection and Cycles.		
Unit-IIConnectivity: Connectivity and Blocks. Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles.14 hoursUnit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.17		Trees: Trees, Cut edges and bonds, Cut vertices and	1	
Vertex Colourings: Polynomials, Girth and chromatic number.Its hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.Its hoursVariable Colourings: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.16 hours		Cayley's formula.	15 hours	
Euler Tours and Hamilton cycles: Euler tours and Hamilton cycles.14 hoursUnit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings.14 hoursIndependent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.14 hours	Unit-II	Connectivity:		
cycles.14 hoursUnit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.14 hours		Connectivity and Blocks.		
Unit-IIIMatchings: Matchings, Matchings and coverings in bipartite graphs and perfect matchings. Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.16		Euler Tours and Hamilton cycles: Euler tours and Hamilton	1	
Image: Service of the service of th		cycles.	14 hours	
Independent sets and Cliques: Independent sets.15 hoursUnit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.16 hours	Unit-III	Matchings: Matchings, Matchings and coverings in bipartite	e	
Unit-IVEdge Colourings: Edge chromatic number and Vizing's theorem. Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.17		graphs and perfect matchings.		
Edge chromatic number and Vizing's theorem.Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.Unit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.		Independent sets and Cliques: Independent sets.	15 hours	
Vertex Colourings: Chromatic number, Brooks' theorem, Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number.16 hoursUnit-VPlanar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.16 hours	Unit-IV	Edge Colourings:		
Hajo's Conjecture - Dirac's Theorem, Chromatic polynomials, Girth and chromatic number. 16 hours Unit-V Planar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem. 16 hours		Edge chromatic number and Vizing's theorem.		
Unit-V Planar Graphs: 16 hours Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem. 16 hours		Vertex Colourings: Chromatic number, Brooks' theorem	,	
Unit-V Planar Graphs: Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.		Hajo's Conjecture - Dirac's Theorem, Chromatic	2	
Plane and planar graphs, Dual graphs, Euler's formula and Kuratowski's theorem.		polynomials, Girth and chromatic number.	16 hours	
Kuratowski's theorem.	Unit-V	Planar Graphs:		
		Plane and planar graphs, Dual graphs, Euler's formula and		
Directed Graphs: Directed graphs, Directed paths and		Kuratowski's theorem.		
		Directed Graphs: Directed graphs, Directed paths and	1	
directed cycles. 15 hours		directed cycles.	15 hours	

Text Book	Bondy, J.A. and Murty, U.S.R. (1976). Graph Theory with Applications,
	Macmillan Company.
Reference	1. Balakrishnan, R. and Ranganathan, K. (2000). A Text Book on
Books	Graph Theory. New York: Springer Verlog.
	2. Gould, R. (1988). Graph Theory. California: The Benjamin/
	Cummings Publishing Company, Inc.
	3. Hartsfield, N. and Ringel, G. (1990). Pearls in Graph Theory.
	Academic Press.

Department	Mathematics	
Course		Effective
course		From the
		Year : 2011
Subject code		
Title	: JAVA PROGAMMING	C 1 ² 4 2
Hrs/ Week Objectives	4 JAVA has now emerged as the language of choice of the wo	Credits : 3
Objectives		1 0
	community due to its simplicity, portability and security. J	Java, the only
	pure object oriented language available to say, is now used	l in almost all
	applications, from simple home appliances control system	is to complex
	space control systems. The ultimate goal of this course	content is to
	develop Java programs, both applications and applets.	
Unit	Contents	Hrs
Unit-I	Fundamentals of Object-Oriented Programming, Java	
	Evolution, Overview of Java Language, Constants,	
	Variables and Data Types.	10 hours
Unit-II	Operators and Expressions, Decision making and	
	Branching, Decision making and looping, Arrays, Strings	
	and Vectors.	10 hours
Unit-III	Classes, Objects and Methods, Interfaces: Multiple	
	Inheritances.	9 hours
Unit-IV	Packages: Putting Classes Together, Multithreaded	
Umt-1v		
	programming, Managing errors and exceptions.	10 hours
Unit-V	Applet programming, How applet differ from applications,	
	Preparing to write applets, Building applet code, Applet life	
	cycle, Creating an executable applet, Designing a web page,	
	Applet Tag, Adding Applet to HTML File, Running the	
	Applet.	11 hours
Text Book	Balaguruswamy, E. (1998). <i>Programming with JAVA</i> . Secon	d Edition.
	Tata Mc GRAW hill.	
Reference	Patric Naughton. (1996). Java hand book. Tata McGRAW H	ill.
Book		

Department	Mathematics	
Course	M.Sc	Effective From the Year : 2011
Subject code		
Title Hrs/ Week	2 PROGRAMMING LAB IN JAVA	Credits : 2
List of program		creates . 2
1. Program to	o count the number of digits, alphabets and special characters	s in a string.
2. Program t	o read a string and rewrite it in the alphabetic order	
3. Program t	o sort given n names	
4. Program f	or matrix multiplication	
5. Program t	o find the transpose of a square matrix, the sum of eleme	ents and largest
element		
6. Program te	o sort the array of given names	
7. Program to	o accept a shopping list of a few items from the command lin	e and store
them in a	vector. Also perform the following:	
a.	delete an item in the list	
b.	add an item at a specified location in the list	
c.	add an item at the end of the list	
d.	print the contents of the vector	
8. Program to	o demonstrate the stack class by creating two integers stacks	that pushes
some valu	es onto each and pops them off.	
9. Designing	g a website having minimum of three web pages	
	a web page of our college offering courses and an applet for argest and the sum of three numbers	selecting the
11. Designing	g a web page with an applet to display bar chart for a diabetic	patient for the
data given	: Period: Week1 Week2 Week3 Week4 Week5	Week6
Week7		
Level:	170 130 230 160 150 140 18	0
Includ	e hospital name, Patients name, Age, Sex in the web page	
-	o create a class "Account" that stores customer name, accoun counts. From this derive the classes "curr_acct" and "sb_acct	

specific to their requirements. Include necessary methods in order to achieve the following tasks.

- a. Accept deposit from a customer and update the balance.
- b. Display the balance
- c. Permit withdrawal and update the balance.

Department	Mathematics	
Course	Fro	ective m the r : 2011
Subject code		
Title Hrs/ Week	: FLUID DYNAMICS 6 Cre	dits:4
Objectives	On completion of the course the students are expected	
	i. to have a good understanding of the fundamental	equation of
	viscous compressible fluid	
	ii. to have studied Bernoulli equation, Momentum th	eorems and
	their various applications.	
	iii. to understand the motion of solid bodies in fluid	
	iv. to have a sound knowledge of boundary layer the	ory.
Unit	Contents	Hrs
Unit-I	Kinematics of fluids and Fundamental equations of the flow	
	of viscous compressible fluids	
	Methods of describing fluid motion: Lagrangian method,	
	Eulerian method-Translation, Rotation and Rate of	
	deformation- Streamlines, Path lines and Streak lines- Material	
	derivative and acceleration- Vorticity, Vorticity in Polar -	
	coordinates- Vorticity in orthogonal curvilinear coordinates-	
	The equation of continuity - conservation of mass- Equation of	
	motion - conservation of momentum- The energy equation -	
	conservation of energy.	16 hours
Unit-II	One dimensional invisid incompressible flow and two and	
	three dimensional invisid incompressible flow	
	Equation of continuity Stream tube flow- Equation of motion	
	Euler's equation-The Bernoulli's equation- Applications of the	
	Bernoulli equation((a) & (b)) - The Momentum theorem-	
	Applications of the momentum theorem((a) & (b))- Equation of	
	continuity - Eulerian equation of motion- Circulation theorems-	
	Velocity potential - irrotational flow- Integration of the	
	equations of motion - Bernoulli's equation- The momentum	
	theorem- The moment of momentum theorem.	16 hours

Unit-III	Laplace's equation	
	Stream function in 2 dimensional motion- The Flow net-Stream	
	function in three dimensional motion- Two dimensional flow	
	examples- Three dimensional axially symmetric flow examples.	14 hours
Unit-IV	Motion of solid bodies in a Fluid	
	Rankine's method of constructing streamlines- Superposition of	
	source and rectilinear flow- Superposition of source and sink	
	with rectilinear flow - The Rankine body- Superposition of	
	rectilinear flow and doublet- Superposition of	
	Vortex, Rectilinear flow and doublet in a two dimensional case.	14 hours
Unit-V	Laminar flow of viscous incompressible fluids and	
	Boundary Layer Theory	
	Flow between parallel flat plates- Steady flow in pipes, Flow	
	through a pipe – The Hagen- Poiseuille flow- Boundary layer	
	concept- The boundary layer equations in two dimensional	
	flow- The boundary layer along a flat plate- The	
	Blasius solution.	15 hours
Text Book	Yuan, S.W. (1988). Foundations of fluid mechanics. New Delhi: Pren	ntice Hall of
	India Pvt. Ltd.	
Reference	1. Curle, N and Davies, H.J. (1971). Modern Fluid Dynamic	s. London: Van
Books	Nostrand publishers.	
	2. Shanthi Swarup. (2000). Fluid dynamics. Meerut: Krishna	a Prakasan
	media Pvt. Ltd.	
	3. Frank Chorlton. (1985). <i>Text book on fluid dynamics</i> . Dell	hi: CBS
	Publishers and Distributors.	

Department	Mathematics		
Course	M.Sc	Effective From the Year : 2011	
Subject code Title	: 11 PME 23 : OPERATOR THEORY		
Hrs/ Week	6	Credits : 4	
Objectives	On completion of the course the students are expected		
	(i) To understand the concepts of Dual space, Reflexivity, Weak convergen		
	and Compact operators and to illustrate them with examples.		
	(ii) To have a clear understanding of Spectrum, Resolvent s	set of an operator	
	and Spectral mapping theorem		
	(iii) To have well founded knowledge in adjoint of an oper	ators, self adjoint	
	operators, normal operators, unitary operators and their prope	rties.	
Unit	Contents	Hrs	
Unit-I	Dual Space Considerations -Representation of Dual Spaces		
	- Dual of $l^p(n)$ - Duals of Some Sequence Spaces - Duals of		
	C[a,b] and L ^p [a,b] - Separability Revisited	15 hours	
Unit-II	Reflexivity and Weak Convergence - Reflexivity - Weak		
	Convergence - Best Approximation in Reflexive Spaces	14 hours	
Unit-III	Compact Operators - Some Characterizations - Space of		
	Compact Operators - Further Properties	14 hours	
Unit-IV	Spectral Results for Banach Space Operators -		
	Eigenspectrum and Approximate Eigenspectrum - Spectrum		
	and Resolvent Set - Spectral Radius - Spectral Mapping		
	Theorem - Gelfand-Mazur theorem and Spectral radius		
	formula (In 10.2.3, Theorem 10.17 only)	16 hours	
Unit-V	Operators on Hilbert Spaces - Adjoint of an Operator -		
	Compactness of the Adjoint Operator - Sesquilinear		
	Functionals - Self-Adjoint, Normal and Unitary Operators -		
	Numerical Range and Numerical Radius - Some		
	Characterizations	16 hours	
Text Book	Thamban Nair, M. (2002). Functional Analysis - A First Cour	rse. New Delhi:	
	Prentice Hall of India Pvt. Ltd.		
Reference	1. Simmons, G.F. (1963). Introduction to Topology and Modern Analysi.		
Books	Tokyo: McGraw-Hill Kogakusha.	·	

2. Sunder, V.S. (1997). Functional Analysis: Spectral Theory. New Delhi:
Hindustan Book Agency.
3. Taylor, A.E. and Lay, D.C. (1980). Introduction to Functional
Analysis. Second Edition. New York: Wiley.
-

Department	Mathematics	
Course	M.Sc	Effective From the Year : 2011
Subject code		
Title Hrs/ Week	: CONTROL THEORY 6	Credits : 4
Objectives	Control theory is relatively a young branch of Applied Mathe	
Ū	completion of the course the students are expected to develop	
	knowledge in the basic problems, namely, observability, con	
		ironaonnty,
	stability, stabilizability and optimal control.	
Unit	Contents	Hrs
Unit-I	Observability: Linear Systems, Observability Grammian,	
	Constant coefficient systems, Reconstruction kernel and	
	Nonlinear Systems.	16 hours
TT . 4 TT	•	
Unit-II	Controllability: Linear Systems, Controllability Grammian,	
	Adjoint Systems, Constant coefficient systems, Steering	
	function and Controllability of Nonlinear System.	15 hours
Unit-III	Stability: Stability, Uniform Stability and Asymptotic	
	Stability of Linear Systems. Perturbed linear systems and	
	Nonlinear systems.	14 hours
Unit-IV	Stabilizability: Stabilization via linear feedback control,	
	Bass method, The Controllable subspace and Stabilization	
	with restricted feedback.	15 hours
Unit-V	Optimal Control: Linear time varying systems with	
Cmt-v	quadratic performance criteria. Linear time invariant	
	systems and nonlinear systems.	15 hours
Text Book	Balachandran, K. and Dauer, J.P. (1999). Elements of Control	ol Theory.
	New Delhi: Narosa.	
Reference	1. Conti, R. (1976). Linear Differential Equations and Contr	ol.
Books		
	London: Academic Press.	
	2. Curtain, R.F. and Pitchard, A.J. (1977). Functional Analys	is and
	Modern Applied Mathematics. New York: Academic Press.	
	3. Klamka, J. (1991). Controllability of Dynamical Systems.	

Dordrecht: Klumer Academic Publisher.
4. Russell, D.L. (1979). Mathematics of Finite Dimensional Control
Systems. New York: Marcel Dekker.

Department	Mathematics	
Course	M.Sc	Effective
		From the
Subject code	• 11 PMF 25	Year : 2011
Title	: STOCHASTIC DIFFERENTIAL EQUATIONS	
Hrs/ Week	6	Credits : 4
Objectives	Stochastic differential equation have a wide range of applica	tions inside as
	well as outside mathematics and the subject has a rapidly of	leveloping life
	of its own as a fascinating research field with man	ny interesting
	unanswered questions. The course needs some background	nd in measure
	theory. In this paper six problems are introduced wh	ere stochastic
	differential equations play an essential role in finding the	neir solutions,
	which will motivate the students for the further advance stud	lies in this and
	related branches of mathematics.	
Unit	Contents	Hrs
Unit-I	Introduction: Stochastic Analogs of Classical Differential	
	Equations, Filtering Problems, Stochastic Approach to	,
	Deterministic Boundary Value Problems, Optimal Stopping	,
	Stochastic Control and Mathematical Finance.	
	Some Mathematical Preliminaries: Probability	7
	Spaces, Random Variables and Stochastic Processes and an	1
	Important Example: Brownian motion.	15 h
Unit-II	Ito Integrals: Construction of the Ito Integral, Some	15 hours
	Properties of the Ito Integral and Extensions of the Ito	
	Integral.	14 hours
T T 1 / T T		
Unit-III	The Ito Formula and The Martingale Representation	
	Theorem: The 1-dimensional Ito Formula, the Multi-	-
	dimensional Ito Formula and the Martingale Representation	L
	Theorem	
	Stochastic Differential Equations: Examples and	l
	Some Solution Methods, An Existence and Uniqueness	;
	Result and Weak and Strong Solutions.	16 hours
Unit-IV	The Filtering Problem: Introduction, the 1-dimensional	l
		.
	Linear Filtering Problem and the Multidimensional Linear	

Unit-V	Diffusions: Basic Properties: The Markov Property, the	
	Strong Markov Property, the Generator of Ito Diffusion, the	
	Dynkin Formula, and the Characteristic Operator.	16 hours
Text Book	Bernt Oksendal. (2003). Stochastic Differential Equation	tions – An
	Introduction with Applications. Sixth Edition. Heidelber	g: Springer-
	Verlog.	
Reference	J. Medhi. (2009). Stochastic Processes. Third Edition.	. New Age
Book	International(p) ltd.	

Department	Mathematics		
Course	M. Sc	Effective	
		From the	
		Year : 2013	
Subject code	: 12PMS26		
Title	: LATEX		
Hrs/ Week	4	Credits : 2	
Objectives			
Unit	Contents	Hrs	
Unit-I	Text formatting, TEX and its offspring, What's different in LATEX 2 ϵ , Distinguishing LATEX 2 ϵ , Basics of a LATEX file.	08	
Unit-II	Commands and environments – Command names and arguments, Environments, Declarations, Lengths, Special Characters, Fragile Commands, Exercises.	10	
Unit-III	Document layout and Organization – Document class, Page style, Parts of the document, Table of contents, Fine – tuning text, Word division. Displayed text – Changing font, Centering and indenting, Lists, Generalized lists, Theorem – like declarations, Tabulator stops, Boxes.	10	
Unit-IV	Tables, Printing literal text, Footnotes and marginal notes, Drawing pictures with Latex.	10	
Unit-V	Mathematical formulas – Mathematical environments, Main elements of math mode, Mathematical symbols, Additional elements, Fine – tuning mathematics.	10	
Text Book	Kopka.H and Daly P.W. (1999) A Guide to Latex, Third Edition, Addison – Wesley, London.		
Reference	1. George Gratzer . (2007). <i>More Math into latex, Fourth Edition,</i>		
Books	Springer. 2. <u>www.tug.org.in/tutorials.html</u> . A latex primer		

Department	Mathematics		
Course	M. Sc	Effective	
		From the	
		Year : 2013	
Subject code	: 12PMS27		
Title	: PROGRAMMING LAB IN LATEX		
Hrs/ Week	2	Credits : 1	
Objectives			
	List of Programs		
	1. To illustrate different font sizes in Latex.		
	2. To prepare a title page in Latex document.		
	3. To understand the section hierarchy of book environm	ent in Latex.	
	4. To prepare a list using itemize environment in Latex.		
	5. To prepare a table in Latex.		
	6. To prepare a table in Latex with multiple title row.		
	7. To split the equations in Latex.		
	8. To type a equations using both left cases and right case	es in Latex.	
	9. To type a system of equations in Latex.		
	10. To type a Mathematical equations using different equation format		
	11. To type a Binomial equations in Latex.		
	12. To type a Christoffel symbol in Latex.		
	13. To use a cross reference in Latex article.		
	14. To import '.eps' picture in Latex.		
	15. To import a picture using Latex draw in Latex.		