DEPARTMENT OF BOTANY NALLAMUTHU GOUNDER MAHALINGAM COLLEGE (AUTONOMOUS), POLLACHI – 642 001.

M.Sc. BOTANY

SYLLABUS & SCHEME OF EXAMINATION

CHOICE BASED CREDIT SYSTEM (CBCS)

[FOR THE STUDENTS ADMITTED DURING THE ACADEMIC YEAR 2015-2016 BATCH & ONWARDS]

(PASSED ON THE BOARD OF STUDIES HELD ON AUGUST 2015)

NGM COLLEGE (AUTONOMOUS), POLLACHI – 01. M.Sc. BOTANY SYLLABUS [CHOICE BASED CREDIT SYSTEM] [FOR 2015-2016 BATCH & ONWARDS] SCHEME OF EXAMINATION

Sem	Code	Subject title	lass hours Wee	Internal	External	Total	Credits
			Ū				-
Ι	15PBY101	Phycology, Mycology, Pathology, Lichenology and Bryology	5	25	75	100	4
Ι	15PBY102	Pteridophytes, Gymnosperms and Palaeobotany	5	25	75	100	4
Ι	15PBY103	Microbes & Microbial technology	5	25	75	100	4
Ι	15PBY1E1	Elective -1 Algal Biotechnology	5	25	75	100	5
Ι	15PBY104	Core Practical- I (for core papers & elective -1)	5	40	60	100	4
II	15PBY205	Cytology, Anatomy and Embryology	5	25	75	100	4
II	15PBY206	Plant physiology	5	25	75	100	4
II	15PBY207	Genetics and Plant Breeding	5	25	75	100	4
II	15PBY208	Core Practical- II (for core papers)	5	40	60	100	4
II	15PBY2N1	Non- Major Elective -1A Mushroom cultivation	1		100	100	2
	15PBY2N2	Non- Major Elective -1B Bioinformatics				1000	
		Total				1000	39

SCHEME OF VALUATION

Papers	Credits	Internal	External	Total
Core	4	25	75	100
Core practical	4	40	60	100
Elective	5	25	75	100
Non- major	2	25	75	100
elective				
Project work	8	0	100	200
viva-voce		50	50	

General question paper pattern

Max. Marks:100) Internal : 25 External : 7		al : 75
Section	Pattern	Mark	Total
Part A	One word question/multiple choice/ true/false	10X1	10
	(10 Questions)		
Part B	Either (or) choice (5 Questions)	5X5	25
Part C	Either (or) choice (5 Questions)	5X8	40
Total : 75			

Department	Botany			
Course	M Sa Datany	Effective from		
Course	MI.SC., Botany	the Year: 2015		
Subject Code :	: 15PBY101			
Title : PHYCO	Semester: 1			
AND BRYOL	AND BRYOLOGY			
Hrs/Week :	5	Credits: 4		
Objectives	• To define and characterize the floral diversity	I		
	• To understand the range of diversification of species			
	• To realize the fundamental values of diversity			
	• To evolve strategies for diversity conservation and sustainable use.			

Unit	Content	Hrs
Unit I	PHYCOLOGY: General characteristics - distribution - classification of	
	algae (Fritsch, 1945) - comparative studies of structure, distribution,	13
	reproduction, life cycles, phylogeny and interrelationships of cyanophyta,	
	chlorophyta, phaeophyta and rhodophyta - economic importance of algae.	
Unit II	MYCOLOGY: General characteristics of fungi - classification of fungi	
	(Alexopoulos and Mims, 1979) - structure, distribution, nutrition,	
	reproduction, phylogeny and interrelationship of myxomycetes, oomycetes,	13
	ascomycetes, basidiomycetes and deuteromycetes - host-parasite interaction	
	- heterothallism and economic importance of fungi - contributions of	
	eminent Indian mycologists.	
Unit III	PATHOLOGY: Fungi and plant diseases - pathogenesis - defense	
	mechanism in plants - phytotoxins and phytalexins - causal organism,	
	symptoms, disease cycle and control measures of the following diseases -	13
	downy mildew of grapes, panama disease of banana, leaf rust of coffee and	
	sheath blight of rice – fungi as biocontrol agents.	
Unit IV	LICHENOLOGY: General characteristics of lichens - classification of	
	lichens (Hale, 1969) - occurrence and interrelationship of phycobionts and	13
	mycobionts, structure and reproduction in ascolichens, basiodiolichens and	
	deuterolichens - lichens as indicators of pollution - economic importance of	
	lichens.	
Unit V	BRYOLOGY: General characteristics of bryophytes - classification of	
	bryophytes (Riemers, 1954) - distribution, structure, reproduction of	
	gametophyte and sporophytes in major classes of bryophytes - spore	13
	dispersal mechanism and economic importance - bryophytes as pollution	
	indicators.	

- 1. Gangulee and Kar, 1970. College Botany Vol. II. New Central Book Agency, New Delhi.
- 2. Rangaswamy, G. and Mahadevan, A. (1999). Diseases of crop plant in India 4th Edition.
- 3. Smith, G.M. 1938. Cryptogamic Botany. Vol, I. Mc Graw Hill Book Co., New York.
- Vashishta, B.R., Sinha, A.K. and Kumar, A. 2005. Botany for degree Students, Bryophyta. S. Chand and Co. Ltd, New Delhi.

- 1. Alexopoulos, C.J. and Mims, C.W. 1979. Introductory Mycology. Wiley Eastern Ltd, New Delhi.
- 2. Fritsch, F.F. 1972. The Structure and Reproduction of the Algae Vol. II. Cambridge University Press, UK.
- 3. Kumar, H.D. 1988. Introductory Phycology. Affiliated East-West Press Ltd. New Delhi.
- 4. Morris, I. 1986. An introduction to the Algae. Cambridge University Press, UK.
- 5. Sharma, P.D. 2006. Plant Pathology. Narso Publishing House, New Delhi.
- 6. Singh, S.K. 2006. Text Book of Bryophyta, Campus Books, New Delhi.
- 7. Webster, J. 1970. Introduction to Fungi. Cambridge University Press, UK.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. R. Kannan		

Department	Botany			
Carrie	M Sa Datany	Effective from the		
Course	M.Sc., Bolany	Year: 2015		
Subject Code Title : PTER	Semester: 1			
Hrs/Week :	5	Credits: 4		
Objectives	• To define and characterize diversity of lower vascular plants			
	To understand thedynamics of diversity			
	• To realize the significance of diversity.			

Unit	Content	Hrs
Unit I	PTERIDOPHYTES: General characteristics of pteridophytes - classification of pteridophytes (Sporne, 1975) – comparative morphology, anatomy, reproduction and life cycle of psilophytopsida, psilotopsida, lycopsida, sphenopsida and pteropsida	13
Unit II	Origin of pteridophytes - phylogenetic trends – stelar evolution - sorus evolution - heterospory and seed habit - apogamy and apospory - affinities of various classes of pteridophytes - economic importance of pteridophytes.	13
Unit III	GYMNOSPERMS: General characteristics and classification of gymnosperms (Sporne, 1965) – comparative morphology, anatomy, reproduction and lifecycle of cycadales, coniferales, ginkgoales and gnetales.	13
Unit IV	Affinities of gymnosperms with angiosperms and pteridophytes - phylogenetic considerations of various classes of gymnosperms - economic importance of gymnosperms.	13
Unit V	PALAEOBOTANY: Introduction to palaebotany - geological time scale - radiocarbon dating- fossil pteridophytes- fossil gymnosperms - fossil fuels - fossil pollen analysis – fossil sites – institute for palaeobotanical studies.	13

- 1. Gangulee and Kar, 1970. College Botany Vol. II. New Central Book Agency, New Delhi.
- 2. Vashishta, P.C. 1991. Gymnosperms. S. Chand & Company Ltd., Ram Nagar, New Delhi.
- 3. Vashishta, P.C. 1991. Vascular Cryptogams. S. Chand & Company Ltd., Ram Nagar, New Delhi.

- 1. Arnold, C.A. 1947. An Introduction to Paleobotany. Academic Press, New York and London
- 2. Biswas, C. and Johre, B.M. 1977. The Gymnosperms. Narosa publishing House, New Delhi.
- 3. Bower, F.O. 1923-28. The ferns. Vol 1-3; Cambridge University Press, London.
- 4. Eames, A.J. 1936. Morphology of Vascular Plants. Lower groups, New York and London.
- 5. Meyen, S.V. 1987. Fundamentals of Paleobotany. Chapman and Hall, New York.
- 6. Sporne, K.R. 1965. The Morphology of Pteridophytes. Hutchinson & Co., London
- 7. Sporne, K.R. 1967. The Morphology of Gymnosperms. Hutchinson & Co., London.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. R. Kannan		
Dr. M. Manimuthu			

Department	Botany			
Course	M Sa Potony	Effective from the		
Course	MI.Sc., Botany	Year: 2015		
Subject Code Title : MICR	Semester: 1			
Hrs/Week :	5	Credits: 4		
Objectives	To introduce the techniques involved in microbiology			
	• To study their industrial application			
	• To know the role of microbes in human welfare			

Unit	Content	Hrs
Unit I	Microbiology – history, branches and scope - classification of	
	microorganism (Bergey's, 1974) – modern trends in bacterial	13
	taxonomy - prokaryotic and eukaryotic microbes - ultra structure of	
	Bacterium - microscopy - light, electron and laser optic system -	
	micrometry.	
Unit II	Culture media - characteristics, types and preparation - microbial	
	cultures - methods of culturing aerobes and anaerobes - methods of	13
	isolation and maintenance of pure culture - microbial growth -	
	nutritional types of microorganisms – enumeration and preservation of	
	microbes - staining techniques.	
Unit III	Bacteria - general characters - bacterial pathogens - Staphylococcus,	
	Streptococcus, Escherichia, Salmonella & Mycobacterium - Viruses -	
	general characters – viral identification – viral transmission and effect	
	of viruses on plants - cucumber mosaic virus, tomato spotted wilt	13
	virus, cauliflower mosaic virus. Control of microorganisms - physical	
	and chemical methods - antibiotics and chemotherapeutic agents - anti	
	microbial susceptibility test.	
Unit IV	Industrial microbiology - fermenters and fermentative microbes -	
	culture preservation - production of microbial products - strain	
	improvement techniques - production of alcohols, malt beverages,	13
	organic acids, antibiotics and aminoacids - immobilization of microbes	
	and enzymes - microbial leaching – biodegradation – biosensors.	
Unit V	Microbial diversity - methods to assess microbial diversity - merits	
	and demerits of culture dependent and culture independent methods -	13
	molecular analysis of bacterial community - Denaturing Gradient Gel	
	Electrophoresis (DGGE), Terminal Restriction Fragment Length	
	Polymorphism (T-RFLP), Amplified Ribosomal DNA and Restriction	
	Analysis (ARDRA).	

- 1. Dubey R.C. and D.K. Maheshwari, 1999. Text book of microbiology, S. Chand & Co. Pvt. Ltd., New Delhi.
- 2. Pelzer Jr. M.J., E.C.S. Chan and N.R. Kreig, 1993. Microbiology, Mc Graw Hill Inc., New York.
- 3. Prescott, L.M., J.P. Harley and D.A. Klein, 2007. Microbiology, McGraw Hill, Boston.

- 1. Greenwood, D., R. Slack and J. Peutherer, 1997. Medical Microbiology, ELST with Churchill Livingstone, Hong Kong.
- 2. Prescott, L.M., J.P. Harley and D.A. Klein, Microbiology, 6/e, 2005. Mc Graw Hill, Boston.
- 3. Salle, A.J., 1999. Fundamental Principles of Bacteriology, Tata McGraw Hill Publishing Company Limited, New Delhi.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. R. Rakkimuthu	Dr. R. Kannan		

Department	Botany		
Course	M So. Botony	Effective from the	
Course	Mi.Sc., Dotany	Year: 2015	
Subject Code : 15PBY1E1 Title : ALGAL BIOTECHNOLOGY		Semester:1	
Hrs/Week :	5	Credits: 5	
Objectives	• To understand the techniques in the culture and processing of algae		
	• To know the economic value and applied aspects of algal biotechnology.		

Unit	Content	Hrs
Unit I	Introduction to algae and their importance - algae as a source of	
	food and fodder - algal polysaccharides (agar agar, carageenan and	13
	alginic acid) - algae in pharmaceutical industries - algal	
	biofertilizer and biofuel - algae as indicator of pollution.	
Unit II	Introduction to microalgal biotechnology - bioprospecting	
	microalgae for commercial applications - basic microalgal	
	culturing techniques - bioactive and novel chemicals from	13
	microalgae - commercial species of industrial production	
	(Chlorella and Dunaliella) - mass cultivation and processing -	
	microalgae for aquaculture - water pollution and bioremediation by	
	microalgae.	
Unit III	Introduction to blue green algal (BGA) biotechnology -	
	cyanobacteria - diversity, organization and features – harmful algal	
	blooms (Anabaena and Microcystis) - Spirulina - nutritive and	13
	therapeutic values - value added biochemicals - Spirulina -	
	culture and mass cultivation – photobioreactors.	
Unit IV	Introduction to macroalgal biotechnology - biochemical	
	composition of seaweeds - bioactive metabolites of seaweeds -	
	extraction and characterization of bioactive components from	13
	seaweeds - commercial uses of seaweeds - seaweed cultivation	
	methods (rope and spore methods) - propagation by protoplast	
	fusion and tissue culture techniques.	
Unit V	Algal transgenics - production of transgenic algae (selectable	
	marker genes, promoters, reporter genes, and transformation	13
	techniques in algal biotechnology) - genetically modified algae and	
	bioprospecting – molecular farming using transgenic algae.	

- 1. Bold, H.C. and Wynne, M.J. 1976. Introduction to Algae structure and reproduction. Prentice-hall.
- 2. Smith and Wittick. 1987. An introduction of Algae. Blackwell Publication.
- 3. Tridevi, P. C. 2001. Algal Biotechnology. Point Publisher, Jaipur, India.

- 1. Becker, S. W. 1994. Micro Algae Biotechnology and Microbiology. Cambridge University Press.
- 2. Chapman, F.G. and Chapman, D.J. 1973. The Algae. McMillan & Co.
- 3. Fritsch, F.E. 1935 and 1945. Structure and reproduction in Algae Vol. I& II, Cambridge University press. 9. Marris, I. 1967. An introduction to the Algae Hatchinson University Lab.
- 4. McCandless, E.L. 1981. Polysaccharides of seaweeds. In The Biology of seaweeds, ed. C.S. Lobban and M.J. Wynne, pp. 559-88. Blackwell, Oxford.
- 5. Presott, G.W. 1970. How to know freshwater Algae W.C. Braun & Co.
- 6. Round, F.E. 1966. The Biology of Algae Edward Arnold.
- 7. Venkatraman, G. S. 1972. Algal Biofertilizers and rice cultivation. Today and Tomorrows Printers and Publishers, New Delhi.
- 8. Zajic, J. E. 1970. Properties and Products of Algae. Plenum Press, New York.

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. R. Kannan			
	Dr. R. Kannan		

Department	Botany		
Course	M Sa Botony	Effective from the	
Course	Mi.Sc., Botany	Year: 2015	
Subject Code : 15PBY104 Title : CORE PRACTICAL I		Semester: 1	
Hrs/Week :	5	Credits: 4	
Objectives	• To acquire practical knowledge on thallus organization of lower plants		
	• To get hands on knowledge on microbes and algal culture techniques.		

Unit	Content	Hrs
Unit I	PHYCOLOGY, MYCOLOGY PATHOLOGY,	
	LICHENOLOGY AND BRYOLOGY	
	Vegetative and reproductive structures of	
	Algae: Cosmarium, Volvox, Caulerpa, Diatoms, Dictyota and	13
	Gracilaria	15
	Fungi: Rhizopus, Ascobolus, Pleurotus and Cercospora	
	Pathology: Downy mildew of grapes, panama disease of banana,	
	leaf rust of coffee, sheath blight of rice.	
	Bryophytes: Marchantia, Anthoceros and Polytrichum.	
	Lichenology: Usnea	
Unit II	PTERIDOPHYES, GYMNOSPERMS AND	
	PALAEOBOTANY	
	Vegetative and reproductive structures of	13
	Pteridophytes-Selaginella, Equisetum, Ophioglossum,	
	Adiantum and Marselia.	
	Gymnosperms -Pinus, Araucaria and Gingko.	
	Paleobotany - <i>Rhynia, Lepidodendron, Lepidocarpon,</i>	
	Williamsonia, Lagenostoma, Lyngiopteris.	
Unit III	MICROBES AND MICROBIAL TECHNOLOGY	
	• Preparation of non-selective and selective media	
	• Culture methods (pour plate, slant & broth)	
	• Enumeration of bacteria (plate count) from soil and water	13
	• Observation of motility of bacteria (hanging drop technique)	
	• Staining methods: simple, negative and Gram staining	
	Biochemical tests for bacteria	
	Bacterial growth curve	
	• Test for coliform bacteria	
	• Spoilage of milk by microorganisms (methylene blue test)	
	Antibiotic assay	
Unit IV	ALGAL BIOTECHNOLOGY	
	Introduction to microalgae	
	Collection of microalgae	
	Phytoplankton net	

	 Culturing of microalgae (<i>Chlorella or Spirulina</i>) Enumeration of microalgae Diversity indices of microalgae Freshwater quality assessment using Palmer & Nygaard's index 	13
Unit V	 Estimation of chlorophyll in algae Estimation of dissolved oxygen Estimation of primary productivity Introduction to macroalgae Culturing of macro algae / seaweed (demo only) Commercial products from macroalgae 	13

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. R. Kannan		
Dr. R. Rakkimuthu			
Dr. M. Manimuthu			

Department	Botany		
Course	M So. Dotony	Effective from the	
Course	WI.SC., Botany	Year: 2015	
Subject Code	: 15PBY205	Somostor: 7	
Title	: CYTOLOGY, ANATOMY AND EMBRYOLOGY	Semester. 2	
Hrs/Week :	5	Credits: 4	
Objectives	• To understand the structure of cells in relation to the f	• To understand the structure of cells in relation to the functional aspects	
	• To study the internal structure of various tissue system	• To study the internal structure of various tissue systems and organs.	
	• To know the mechanisms processes in the reproductive phase of plants		

Unit	Content	Hrs
Unit I	CYTOLOGY: Structural organization of the plant cell - cell wall -	
	primary and secondary - plasma membrane - structure, models and	
	functions, channels, pumps and receptors - plasmodesmata - ultra	13
	structure of chloroplast and mitochondria - chloroplast and	
	mitochondrial genomes - structure and functions of glyosomes,	
	peroxisomes, spherosomes and lysosomes - ultra structure of nucleus -	
	Structure and organisation of chromosomes.	
Unit II	ANATOMY: General account and theories of organization of shoot	
	apex and root apex - quiescent centre and modern concept on	
	meristems - structural diversity, functional complexity and	13
	phylogenetic trends in specialization of complex permanent tissues	
	(xylem and phloem) - cambium - origin - structure, storied and non-	
	storied types - formation of cork cambium, and periderm - anomalous	
	secondary growth in dicot and monocot.	
Unit III	ANATOMY: Vascular differentiation in primary and secondary	
	structure of root and stem in dicot and monocot - origin of lateral roots	
	- root stem transition - anatomy of dicot and monocot leaves -	13
	stomatal types - nodal anatomy - petiole anatomy - trichomes - glands	
	- secretory tissues – nectaries - laticifers and their significance.	
Unit IV	EMBRYOLOGY: Microsporangium – microsporogenesis -	
	microspores - arrangement - morphology - ultrastructure -	
	microgametogenesis - pollen - stigma - incompatibility - methods to	13
	overcome incompatibility - megasporangium - megagametogenesis -	
	female gametophyte - monosporic - bisporic and tetrasporic - nutrition	
	of embryo sac and fertilization.	
Unit V	EMBRYOLOGY: Endosperm - types - endosperm haustoria -	
	cytology and physiology of endosperms - functions of endosperms -	13
	embryo development in dicot and monocot - nutrition of embryo -	
	polyembryony- apomixis - apospory.	

- 1. Bhojwani, S.S. and Bhatnagar, S.P. 1986. The Embryology and Angiosperms. Vikas publishing house pvt. Ltd, New Delhi.
- 2. Easu, K. 1985. Plant Anatomy, Wiley Eastern Pvt. Ltd., New Delhi.
- 3. Johri, B.M. (ed) 1983. Embryology of Angiosperms, Springer-Verlag, New York.
- 4. Pandey, B.P. 1993. Plant anatomy, S. Chand & Co, New Delhi.

- 1. Baker, J.R. 1966. Cytological Techniques (5th ed.), Methuen, London.
- 2. Bierhorst, D.W. 1971. Morphology of vascular plants. Macmillan publishers, New York.
- 3. Maheshwari, P. 1963. Recent Advances in Embryology of Angiosperms. Intl. Soc. Plant Morphologists, New Delhi.
- 4. Pullaiah, T., Lakshiminarayana, K. and Hanumantha Rao, B. 2006. Text book of Embryology of Angiosperms. Regency Publications, New Delhi.
- 5. Raghuvanshi, R.K., Chauhan, A.K.S. and Siddiqui, B.A. 1995. Practical exercises in Cytology, genetics, Plant Breeding and Biostatistics. CBS Publishers & Distributors, New Delhi.
- 6. Swanson, P. and Webster, P. 1977. The Cell. Prentice Hall, Inc. Englewood Cliffs, New Jersey, USA.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. R. Kannan		
Dr. Rakkimuthu			

Department	Botany		
C	M Sa Datany	Effective from the	
Course	MI.SC., Botany	Year: 2015	
Subject Code	Subject Code : 15PBY206		
Title	: PLANT PHYSIOLOGY	Semester: 2	
Hrs/Week :	5	Credits: 4	
Objectives	• To understand the concepts involved in the functions of plants		
	• To study the recentaspects of various physiological processes in plants.		

Unit	Content	Hrs
Unit I	Water and plant cells - water balance of the plant - mineral nutrition -	
	Uptake, transport and translocation of water, ions, solutes and	
	macromolecules from soil, through cells, across membranes, through	13
	xylem and phloem – transpiration - mechanisms of loading and	
	unloading of photoassimilates - Signal transduction: receptors and G-	
	proteins, phospholipids signaling - role of cyclic nucleotides, calcium -	
	calmodulin cascade - protein kinases and phosphatases - specific	
	signaling mechanisms (two component sensor – regulator system).	
Unit II	Photosynthesis: evolution of photosynthetic apparatus - photosynthetic	
	pigments and light harvesting complexes - photooxidation of water -	
	mechanism of electron and proton transport - carbon assimilation -	13
	calvin cycle - photoprotective mechanisms - CO ₂ fixation - C ₃ , C ₄ and	
	CAM pathways - Respiration and photorespiration: citric acid cycle -	
	plant mitochondrial electron transport and ATP synthesis - alternate	
	oxidase - photorespiratory pathway - RUBISCO - significance of	
	photorespiration.	
Unit III	Nitrogen metabolism: Nitrate and ammonium assimilation - amino acid	
	biosynthesis - Phytohormones: biosynthesis and mechanism of action	
	of phytohormones - auxin, gibberellin, cytokinin, ethylene and ABA -	13
	apoptosis - Sensory photobiology: structure, function and mechanisms	
	of action of phytochromes, cryptochromes and phototropins - stomatal	
	movements - photoperiodism and biological clocks.	
Unit IV	Carbohydrate metabolism - regulation of starch and sucrose	
	biosynthesis, synthesis and degradation of cellulose - pectin	
	biosynthesis and enzymes involved in pectin degradation - organic acid	13
	metabolism - metabolism and roles of oxalic acid, ascorbic acid and	
	malic acid - Lipid metabolism: synthesis of membrane lipids, structural	
	lipids and storage lipids and their catabolism - gluconeogenesis.	

Unit V	Secondary metabolites - Shikimate pathway and its role in biosynthesis	
	of secondary metabolites - biosynthesis of terpenes, phenols and	
	nitrogenous compounds and their roles - Stress physiology: responses	13
	of plants to biotic (pathogen and insects) and abiotic (water,	
	temperature and salt) stresses - mechanisms of resistance to biotic	
	stress and tolerance to abiotic stress.	

- 1. Jain, V.K. 2000. Fundamentals of Plant Physiology (5th ed.), S. Chand & Co Ltd; New Delhi.
- 2. Pandey, S.N. and Sinha, B.K. 2010. Plant Physiology, Vikas Publishing, New Delhi.

- 1. Devlin, R.M. and Baker, N.R. 1973. Photosynthesis, Reinhold Affiliated East-West Press Pvt. Ltd, New Delhi.
- 2. Moore, T.C. 1979. Biochemistry and physiology of plant hormones. Narosa book Distributors, New Delhi.
- 3. Roberts, E.A. 1987. Plant growth regulators. Kluwer Academic publishers, London.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. R. Kannan		
Dr. M. Manimuthu			

Department	Botany	
Course	M Sa Datany	Effective from
Course	MI.SC., Botany	the Year: 2015
Subject Code :	: 15PBY207	Samastar: 2
Title	: GENETICS AND PLANT BREEDING	Semester. 2
Hrs/Week :	5	Credits: 4
Objectives	• To understand the heredity and the variation of inherited characteristics	
	• To study the gene behavior its distribution and mutations	
	• To acquire knowledge on various breeding methods	
	• To learn the applications of induced mutations	

Unit	Content	Hrs
Unit I	Classical genetics: Mendelian genetics - interaction of genes, modified	
	mendelian ratio - genetics of multiple alleles - penetrance and expressivity	
	– pleiotropism, pseudoalleles, and phenocopies - quantitative inheritance -	13
	sex linked, sex influenced inheritance (special reference to plants) -	
	genetics of sex determination - chromosome mapping - reverse genetics	
	and epigenetics.	
Unit II	Extra-nuclear inheritance: cytoplasmic inheritance – chloroplast –	
	mitochondrial genome in higher plants - DNA as genetic material,	13
	transposable elements - population genetics - Hardy-Weinberg Law - gene	
	pool, gene frequency and genotype frequency.	
Unit III	Classification of mutations - gene mutations - spontaneous and induced	
	mutations - physical and chemical mutagens - molecular basis of gene	
	mutation - point and frame shift and suppressor mutation - gene	13
	regulatory mechanisms (prokaryotes & eukaryotes) - genetic disorders in	
	human.	
Unit IV	Modern Genetics: Gene mapping methods based on test-cross and F2	
	progenies - LOD score analysis - tetrad analysis and its significance -	
	somatic cell genetics and its use in mapping - molecular markers for	13
	genome mapping - principles and methods of QTL mapping - RNA	
	interference (RNAi) - PTGS, RNAi and related phenomena - genetic	
	analysis using RNAi - high-throughput small RNA profiling - RNAi	
	microarrays.	
Unit V	Introduction to breeding of cultivated plants - significance of breeding -	
	polyploidy and haploids in plant breeding – Breeding techniques:	
	Selection techniques: Types of selection -selection in segregating	13
	populations - pedigree method, bulk method and back cross method.	
	Hybridization: Intervarietal, interspecific and intergeneric hybridization -	

heterosis - hybrid vigour - marker assisted breeding - national and
international organizations for crop improvement.

- 1. Gardener, E.J. 1975. Principles of Genetics (5th ed.), John wiley, New York.
- 2. Gupta, P.K. 1994. Genetics, Rashtogi Publication, Meerut, India
- 3. Singh, E.D. 1990. Plant Breeding. Kalyani Publishers, New Delhi.

- 1. Allard, R.W. 1960. Principles of Plant Breeding, John Wiley and Sons, Inc. New York.
- 2. Gilber, N.W. 1978. Organellar heredity, Revan press, New York.
- 3. King, R.C. 1975. A Hand book of Genetics, Plenum Press, New York.
- 4. Simmonds, N.W. 1979. Principles of Crop improvement. Longman, London.
- 5. Strickberger, M.V. 1977. Genetics, Macmillan publishers, New York.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. R. Kannan	Dr. R. Kannan		

Department	Botany		
Course	M So. Potony	Effective from the	
Course		Year: 2015	
Subject Code : 15PBY208			
Title	: CORE PRACTICAL II	Semester . 2	
Hrs/Week :	5	Credits: 4	
Objectives	• To study the physiological processes in the plant system		
	• To acquire practical knowledge on cell and tissue development and		
	organization		
	• To know the inheritance in plants and breeding techniques.		

Unit	Content	Hrs
Unit I	CYTOLOGY	
	1. Study of cells (Prokaryotic and Eukaryotic)	
	2. Chromosome morphology	13
	3. Specialized chromosomes	
	4. Mitotic and meiotic divisions	
Unit II	ANATOMY	
	1. Preparation of sections of stem, root and leaf	
	2. Staining of various plant tissues	13
	3. Anomalous secondary thickening in monocot and dicots.	
	4. Microtomy	
	5. Maceration techniques	
	6. Slide submission (Microtomy -5 , free hand sections -5)	
Unit III	EMBRYOLOGY	
	1. Anther development	
	2. Female gametophyte	13
	3. Endosperm-types and haustoria	
	4. Dissection of embryos	
	5. Polyembryony	
Unit IV	PLANT PHYSIOLOGY	
	1. Rate of transpiration under varying climatic factors	
	2. Rate of photosynthesis under varying CO_2 concentration in	13
	water plants.	
	3. Rate of respiration using Ganongs respiroscope	
	4. Separation of plant pigments by thin layer, paper and	
	column chromatography.	
	5. Estimation of chlorophyll and carotenoid pigments	
	6. Determination of total antioxidant activity by	
	phosphomolybdenum reduction method.	

Unit V	GENETICS AND PLANT BREEDING	
	1. Mendelian inheritance	13
	2. Non – mendelian inheritance	
	3. Plant breeding techniques	

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. R. Kannan		
Dr. R. Rakkimuthu			
Dr. M. Manimuthu			

Department	Botany	
Course	M.S. Detany	Effective from the
Course	1.Sc., Botany	Year: 2015
Subject Code : 15PBY2N1		Somestory 2
Title	: MUSHROOM CULTIVATION	Semester: 2
Hrs/Week :	1	Credits: 2
Objectives	• To impart skills on mushroom cultivation, an agro based industry	
	• To have an idea on the intricacies of mushroom cultivation	

Unit	Content	Hrs
Unit I	Introduction – morphology –types of mushroom – identification of edible and poisonous mushroom – nutritive and medicinal values –	3
	life cycle of common edible mushrooms.	
Unit II	Methods of mushroom cultivation (Hanging bag, bed and rack method) – prospects and scope of mushroom cultivation in small scale industry.	3
Unit III	Life cycle of <i>Pleurotus, Agaricus, Volvariella, Calocybe</i> and <i>Lentinus</i> – breeding and genetic improvement of mushroom strains.	2
Unit IV	Cultivation – conditions for tropical and temperate countries, isolation – spawn production – growth media – spawn running and harvesting of mushrooms.	2
Unit V	Diseases and post harvest technology – harvesting - freezing, dry freezing, drying, packaging and marketing - recipes from mushrooms.	2

- 1. Hand book of mushroom cultivation, 1999, TNAU publication.
- 2. Nita Bhal. (2000). Handbook on Mushrooms. 2nd ed. Vol. I and II. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
- 3. Tripathi, D. P. (2005). Mushroom Cultivation. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.

- 1. Alice, D., Muthusamy and Yesuraja, M. (1999). Mushroom Culture. Agricultural College, Research Institute Publications, Madurai.
- 2. Pathak, V. N. and Yadav, N. (1998). Mushroom Production and Processing Technology. Agrobios, Jodhpur.
- 3. Tewari Pankaj Kapoor, S. C. (1988). Mushroom Cultivation. Mittal Publication, New Delhi.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. M. Manimuthu	Dr. R. Kannan		

Department	Botany		
Course	M.Sc., Botany	Effective from the Year: 2015	
Subject Code : 15PBY2N2Title: BIOINFORMATICS		Semester: 2	
Hrs/Week :	1	Credits: 2	
Objectives	To gain knowledge on Bioinformatics and databases		
	• To understand the applications of bioinformatics tools		

Unit	Content	Hrs
Unit I	Fundamentals of computers: Introduction and scope of bioinformatics, Introduction to computers - types of hardware and software operating systems - internet - world wide web-search engines - their functions - searching - file formats telnet ftp	3
Unit II	Biological Databases - sequence and structure- data retrieval - searching source data bases - sequence similarity searches - FASTA and BLAST, CLUSTAL and PHYLIP - use of nucleic acids and protein data banks - NCBI, EMBL, DDBJ, SWISSPROT – multiple sequence alignment.	3
Unit III	Data analysis: Sequence analysis, pair wise alignment and data base search - phylogenetic analysis, profiles and motifs - protein structure visualization - prediction of function from a sequence.	2
Unit IV	Chemical composition of biomolecules DNA and RNA - Structure of DNA - development of DNA sequence methods - gene finding and feature detection in DNA.	2
Unit V	Sequencing of databases: Pair wise sequence comparison, sequencing proteins, genome sequencing, SAGE, biological data bases - drug designing - Human genome project and gene therapy.	2

- 1. Andreas D. Baxevanis and B.F. Francis overlette, 2002. Bio-informatics, John wiley& Sons.
- 2. Attwood, T. K. and Parry Smith, D. J. 1999. Introduction to bioinformatics Addison Wesley congman Limited, England.
- 3. Chowdhary, K. R., and Bansal. V. S. 2011. Bioinformatics and computational technologies. 1 stedn. Scientific publishers, New Delhi.
- 4. Ignacimuthu, S.J. 2005. Basic Bio-informatics, V.K. Mehra, Narosa publishing house.

- 1. Des Higgins, Willie Taylor, 2004. Bio-informatics, Oxford university press.
- Dunn, S. R. and Pennington, M. J. 2002. Proteomics from protein sequences to function 3rdedn. Viva books Pvt., Ltd, New Delhi.
- 3. Gibas and Jamback. Developing Bioinformatics Computer skills, O- Rielly Associates
- 4. Harshishtha,D.,.2006. Techniques in teaching computers. International book distributor, Dehradun.
- 5. Irfan alikhan, AtiyaKhanum, 2003. Essentials of Bio-informatics, Ukaaz publications.
- 6. Primrose, S. B., and Twyman, R. M., 2003. Principles of genome analysis and genomics.
- 7. Rastpgo, S, N. Mendinatta and P. Rastogi. 2003. Bio-informatics—Concepts, skills and application. CBS. publication, New Delhi

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. R. Kannan	Dr. R. Kannan		
Dr. E. Neelamathi			