NALLAMUTHU GOUNDER MAHALINGAM COLLEGE (AUTONOMOUS) POLLACHI – 642 001.

M.Sc. BOTANY

SYLLABUS & SCHEME OF EXAMINATION

CHOICE BASED CREDITS SYSTEM (CBCS)

[FOR THE STUDENTS ADMITTED DURING THE ACADEMIC YEAR 2016-2017 BATCH & ONWARDS]

(PASSED ON THE BOARD OF STUDIES HELD ON MARCH 2016)

NGM COLLEGE (AUTONOMOUS), POLLACHI – 01. M.Sc. BOTANY SYLLABUS [CHOICE BASED CREDITS SYSTEM] [FOR 2016-2017BATCH & ONWARDS] SCHEME OF EXAMINATION

C	C-1-	Code Subject title	y y	70	Maximum marks			
Sem	Code	Subject title	gr 🛪	Hrs		mark	KS 	SS
			Class hours /Week	Exam Hrs	Internal	External	Total	Creditss
I	16PBY101	Phycology, Mycology, Pathology, Lichenology and Bryology	5	3	25	75	100	4
I	16PBY102	Pteridophytes, Gymnosperms and Palaeobotany	5	3	25	75	100	4
I	16PBY103	Microbes & Microbial technology	5	3	25	75	100	4
I	16PBY1E1	Elective -1 Algal Biotechnology	5	3	25	75	100	5
I	16PBY104	Core Practical-I (for core papers & elective -1)	5	4	40	60	100	4
II	16PBY205	Cytology, Anatomy and Embryology	5	3	25	75	100	4
II	16PBY206	Plant physiology	5	3	25	75	100	4
II	16PBY207	Genetics and Plant Breeding	5	3	25	75	100	4
II	16PBY208	Core Practical- II (for core papers)	5	4	40	60	100	4
II	16PBY2N1	Non- Major Elective -1A Mushroom cultivation	1	3		100	100	2
	16PBY2N2	Non- Major Elective -1B Bioinformatics	1					
III	16PBY309	Plant Systematics	5	3	25	75	100	5
III	16PBY310	Biochemistry	5	3	25	75	100	4
III	16PBY311	Research Methodology	5	3	25	75	100	4
III	16PBY3E2	Elective -2 Genomics and Proteomics	5	3	25	75	100	5
III	16PBY312	Core Practical- III (Plant Systematics & elective -2)	5	4	40	60	100	4
III	16PBY313	Core Practical –IV (Biochemistry & Research Methodology)	5	4	40	60	100	4
		5,7						
IV	16PBY414	Plant Biotechnology	5	3	25	75	100	4
IV	16PBY415	Environmental management and Conservation of biodiversity	5	3	25	75	100	4
IV	16PBY4E3	Elective -3 Forest Botany	5	3	25	75	100	5
IV	16PBY416	Core Practical -V (for core papers & elective -3)	5	4	40	60	100	4
IV	16PBY4P1	Project Work and Viva-Voce	6	-	40	160	200	8
		Total					2200	90

SCHEME OF VALUATION

Papers	Credits	Internal	External	Total
Core	4	25	75	100
Core practical	4	40	60	100
Elective	5	25	75	100
Non- major	2	25	75	100
elective				
Project work	8	0	100	200
viva-voce		50	50	

General question paper pattern

Max. Marks:100	Internal: 25	External: 75	
Section	Pattern	Mark	Total
Part A	One word question/multiple choice/ true/false	10X1	10
	(10 Questions)		
Part B	Either (or) choice (5 Questions)	5X5	25
Part C	Either (or) choice (5 Questions)	5X8	40
		Total:	75

Department	Botany			
Course	M.So. Dotony	Effective from		
Course	M.Sc., Botany	the Year: 2016		
Subject Code	: 16PBY101			
Title: PHYC	DLOGY, MYCOLOGY, PATHOLOGY, LICHENOLOGY	Semester: 1		
AND BRYOL	OGY			
Hrs/Week:	5	Credits: 4		
Objectives	To define and characterize the floral diversity			
	 To understand the range of diversification of species 			
	To realize the fundamental values of diversity			
	To evolve strategies for diversity conservation and sustain	ainable use.		

Unit	Content	Hrs
Unit I	PHYCOLOGY: General characteristics – distribution - classification of	
	algae (Fritsch, 1945) - comparative studies of structure, distribution,	13
	reproduction, life cycles, phylogeny and interrelationships of cyanophyta,	
	chlorophyta, phaeophyta and rhodophyta - economic importance of algae.	
Unit II	MYCOLOGY: General characteristics of fungi - classification of fungi	
	(Alexopoulos and Mims, 1979) - structure, distribution, nutrition,	
	reproduction, phylogeny and interrelationship of myxomycetes, oomycetes,	13
	ascomycetes, basidiomycetes and deuteromycetes - host-parasite interaction	
	- heterothallism and economic importance of fungi - contributions of	
	eminent Indian mycologists.	
Unit III	PATHOLOGY: Fungi and plant diseases – pathogenesis – defense	
	mechanism in plants – phytotoxins and phytalexins – causal organism,	
	symptoms, disease cycle and control measures of the following diseases –	13
	downy mildew of grapes, panama disease of banana, leaf rust of coffee and	
	sheath blight of rice – fungi as biocontrol agents.	
Unit IV	LICHENOLOGY: General characteristics of lichens - classification of	
	lichens (Hale, 1969) - occurrence and interrelationship of phycobionts and	13
	mycobionts, structure and reproduction in ascolichens, basiodiolichens and	
	deuterolichens - lichens as indicators of pollution - economic importance of	
	lichens.	
Unit V	BRYOLOGY: General characteristics of bryophytes - classification of	
	bryophytes (Riemers, 1954) – distribution, structure, reproduction of	
	gametophyte and sporophytes in major classes of bryophytes - spore	13
	dispersal mechanism and economic importance - bryophytes as pollution	
	indicators.	

- 1. Gangulee and Kar, 1970. College Botany Vol. II. New Central Book Agency, New Delhi.
- 2. Rangaswamy, G. and Mahadevan, A. (1999). Diseases of crop plant in India 4th Edition.
- 3. Smith, G.M. 1938. Cryptogamic Botany. Vol, I. Mc Graw Hill Book Co., New York.
- 4. Vashishta, B.R., Sinha, A.K. and Kumar, A. 2005. Botany for degree Students, Bryophyta. S. Chand and Co. Ltd, New Delhi.

- 1. Alexopoulos, C.J. and Mims, C.W. 1979. Introductory Mycology. Wiley Eastern Ltd, New Delhi
- 2. Fritsch, F.F. 1972. The Structure and Reproduction of the Algae Vol. II. Cambridge University Press, UK.
- 3. Kumar, H.D. 1988. Introductory Phycology. Affiliated East-West Press Ltd. New Delhi.
- 4. Morris, I. 1986. An introduction to the Algae. Cambridge University Press, UK.
- 5. Sharma, P.D. 2006. Plant Pathology. Narso Publishing House, New Delhi.
- 6. Singh, S.K. 2006. Text Book of Bryophyta, Campus Books, New Delhi.
- 7. Webster, J. 1970. Introduction to Fungi. Cambridge University Press, UK.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		

Department	Botany		
Course	M.So. Dotony	Effective from the	
Course	M.Sc., Botany	Year: 2016	
Subject Code Title: PTER	Semester: 1		
Hrs/Week:	5	Credits: 4	
Objectives	• To define and characterize diversity of lower vascular plants		
	To understand the dynamics of diversity		
	To realize the significance of diversity.		

Unit	Content	Hrs
Unit I	PTERIDOPHYTES: General characteristics of pteridophytes - classification of pteridophytes (Sporne, 1975) – comparative morphology, anatomy, reproduction and life cycle of psilophytopsida, psilotopsida, lycopsida, sphenopsida and pteropsida	13
Unit II	Origin of pteridophytes - phylogenetic trends – stelar evolution - sorus evolution - heterospory and seed habit - apogamy and apospory - affinities of various classes of pteridophytes - economic importance of pteridophytes.	13
Unit III	GYMNOSPERMS: General characteristics and classification of gymnosperms (Sporne, 1965) – comparative morphology, anatomy, reproduction and lifecycle of cycadales, coniferales, ginkgoales and gnetales.	13
Unit IV	Affinities of gymnosperms with angiosperms and pteridophytes - phylogenetic considerations of various classes of gymnosperms - economic importance of gymnosperms.	13
Unit V	PALAEOBOTANY: Introduction to palaebotany - geological time scale - radiocarbon dating- fossil pteridophytes- fossil gymnosperms - fossil fuels - fossil pollen analysis - fossil sites - institute for palaeobotanical studies.	13

- 1. Gangulee and Kar, 1970. College Botany Vol. II. New Central Book Agency, New Delhi.
- 2. Vashishta, P.C. 1991. Gymnosperms. S. Chand & Company Ltd., Ram Nagar, New Delhi.
- 3. Vashishta, P.C. 1991. Vascular Cryptogams. S. Chand & Company Ltd., Ram Nagar, New Delhi.

- 1. Arnold, C.A. 1947. An Introduction to Paleobotany. Academic Press, New York and London
- 2. Biswas, C. and Johre, B.M. 1977. The Gymnosperms. Narosa publishing House, New Delhi.
- 3. Bower, F.O. 1923-28. The ferns. Vol 1-3; Cambridge University Press, London.
- 4. Eames, A.J. 1936. Morphology of Vascular Plants. Lower groups, New York and London.
- 5. Meyen, S.V. 1987. Fundamentals of Paleobotany. Chapman and Hall, New York.
- 6. Sporne, K.R. 1965. The Morphology of Pteridophytes. Hutchinson & Co., London
- 7. Sporne, K.R. 1967. The Morphology of Gymnosperms. Hutchinson & Co., London.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		
Dr. P. Sathish Kumar			

Department	Botany	
Course	M.Sc., Botany	Effective from the
		Year: 2016
Subject Code Title: MICF	: 16PBY103 COBES AND MICROBIAL TECHNOLOGY	Semester: 1
Hrs/Week:	5	Credits: 4
Objectives	To introduce the techniques involved in microbiology	7
	To study their industrial application	
	 To know the role of microbes in human welfare 	

Unit	Content	Hrs
Unit I	Microbiology - history, branches and scope - classification of	
	microorganism (Bergey's, 1974) - modern trends in bacterial	13
	taxonomy - prokaryotic and eukaryotic microbes - ultra structure of	
	Bacterium - microscopy - light, electron and laser optic system -	
	micrometry.	
Unit II	Culture media – characteristics, types and preparation – microbial	
	cultures – methods of culturing aerobes and anaerobes – methods of	13
	isolation and maintenance of pure culture - microbial growth -	
	nutritional types of microorganisms – enumeration and preservation of	
	microbes - staining techniques.	
Unit III	Bacteria – general characters – bacterial pathogens - Staphylococcus,	
	Streptococcus, Escherichia, Salmonella & Mycobacterium - Viruses -	
	general characters – viral identification – viral transmission and effect	
	of viruses on plants – cucumber mosaic virus, tomato spotted wilt	13
	virus, cauliflower mosaic virus. Control of microorganisms - physical	
	and chemical methods - antibiotics and chemotherapeutic agents - anti	
	microbial susceptibility test.	
Unit IV	Industrial microbiology – fermenters and fermentative microbes –	
	culture preservation – production of microbial products – strain	
	improvement techniques - production of alcohols, malt beverages,	13
	organic acids, antibiotics and aminoacids - immobilization of microbes	
	and enzymes - microbial leaching – biodegradation – biosensors.	
Unit V	Microbial diversity - methods to assess microbial diversity - merits	
	and demerits of culture dependent and culture independent methods -	13
	molecular analysis of bacterial community - Denaturing Gradient Gel	
	Electrophoresis (DGGE), Terminal Restriction Fragment Length	
	Polymorphism (T-RFLP), Amplified Ribosomal DNA and Restriction	
	Analysis (ARDRA).	

- 1. Dubey R.C. and D.K. Maheshwari, 1999. Text book of microbiology, S. Chand & Co. Pvt. Ltd., New Delhi.
- 2. Pelzer Jr. M.J., E.C.S. Chan and N.R. Kreig, 1993. Microbiology, Mc Graw Hill Inc., New York.
- 3. Prescott, L.M., J.P. Harley and D.A. Klein, 2007. Microbiology, McGraw Hill, Boston.

- 1. Greenwood, D., R. Slack and J. Peutherer, 1997. Medical Microbiology, ELST with Churchill Livingstone, Hong Kong.
- 2. Prescott, L.M., J.P. Harley and D.A. Klein, Microbiology, 6/e, 2005. Mc Graw Hill, Boston.
- 3. Salle, A.J., 1999. Fundamental Principles of Bacteriology, Tata McGraw Hill Publishing Company Limited, New Delhi.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. R. Rakkimuthu	Dr. E. Neelamathi		

Department	Botany	
Course	M.Sc., Botany	Effective from the Year: 2016
Subject Code Title : ALGA	: 16PBY1E1 AL BIOTECHNOLOGY	Semester:1
Hrs/Week:	5	Credits: 5
Objectives	 To understand the techniques in the culture and processing of algae To know the economic value and applied aspects of algal biotechnology. 	

Unit	Content	Hrs
Unit I	Introduction to algae and their importance - algae as a source of	
	food and fodder - algal polysaccharides (agar agar, carageenan and	13
	alginic acid) - algae in pharmaceutical industries - algal	
	biofertilizer and biofuel - algae as indicator of pollution.	
Unit II	Introduction to microalgal biotechnology - bioprospecting	
	microalgae for commercial applications - basic microalgal	
	culturing techniques - bioactive and novel chemicals from	13
	microalgae - commercial species of industrial production	
	(Chlorella and Dunaliella) - mass cultivation and processing -	
	microalgae for aquaculture - water pollution and bioremediation by	
	microalgae.	
Unit III	Introduction to blue green algal (BGA) biotechnology -	
	cyanobacteria - diversity, organization and features – harmful algal	
	blooms (Anabaena and Microcystis) - Spirulina - nutritive and	13
	therapeutic values – value added biochemicals – Spirulina –	
	culture and mass cultivation – photobioreactors.	
Unit IV	Introduction to macroalgal biotechnology - biochemical	
	composition of seaweeds - bioactive metabolites of seaweeds -	
	extraction and characterization of bioactive components from	13
	seaweeds - commercial uses of seaweeds - seaweed cultivation	
	methods (rope and spore methods) – propagation by protoplast	
	fusion and tissue culture techniques.	
Unit V	Algal transgenics - production of transgenic algae (selectable	
	marker genes, promoters, reporter genes, and transformation	13
	techniques in algal biotechnology) - genetically modified algae and	
	bioprospecting – molecular farming using transgenic algae.	

- 1. Bold, H.C. and Wynne, M.J. 1976. Introduction to Algae structure and reproduction. Prentice-hall.
- 2. Smith and Wittick. 1987. An introduction of Algae. Blackwell Publication.
- 3. Tridevi, P. C. 2001. Algal Biotechnology. Point Publisher, Jaipur, India.

- 1. Becker, S. W. 1994. Micro Algae Biotechnology and Microbiology. Cambridge University Press.
- 2. Chapman, F.G. and Chapman, D.J. 1973. The Algae. McMillan & Co.
- 3. Fritsch, F.E. 1935 and 1945. Structure and reproduction in Algae Vol. I& II, Cambridge University press. 9. Marris, I. 1967. An introduction to the Algae Hatchinson University Lab.
- 4. McCandless, E.L. 1981. Polysaccharides of seaweeds. In The Biology of seaweeds, ed. C.S. Lobban and M.J. Wynne, pp. 559-88. Blackwell, Oxford.
- 5. Presott, G.W. 1970. How to know freshwater Algae W.C. Braun & Co.
- 6. Round, F.E. 1966. The Biology of Algae Edward Arnold.
- 7. Venkatraman, G. S. 1972. Algal Biofertilizers and rice cultivation. Today and Tomorrows Printers and Publishers, New Delhi.
- 8. Zajic, J. E. 1970. Properties and Products of Algae. Plenum Press, New York.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		
Dr. C. Anbarasu			

Department	Botany	
Course	Course M.Sc., Botany	
Subject Code: 16PBY104 Title: CORE PRACTICAL I Semester: 1		
Hrs/Week:	5	Credits: 4
Objectives	 To acquire practical knowledge on thallus organization of lower plants To get hands on knowledge on microbes and algal culture techniques. 	

		Hrs
Unit I	PHYCOLOGY, MYCOLOGY PATHOLOGY,	
	LICHENOLOGY AND BRYOLOGY	
	Vegetative and reproductive structures of	
	Algae: Cosmarium, Volvox, Caulerpa, Diatoms, Dictyota and	13
	Gracilaria	10
	Fungi: Rhizopus, Ascobolus, Pleurotus and Cercospora	
	Pathology: Downy mildew of grapes, panama disease of banana,	
	leaf rust of coffee, sheath blight of rice.	
	Bryophytes: Marchantia, Anthoceros and Polytrichum.	
	Lichenology: Usnea	
Unit II	PTERIDOPHYES, GYMNOSPERMS AND	
	PALAEOBOTANY	
	Vegetative and reproductive structures of	13
	Pteridophytes-Selaginella, Equisetum, Ophioglossum,	
	Adiantum and Marselia.	
	Gymnosperms -Pinus, Araucaria and Gingko.	
	Paleobotany - Rhynia, Lepidodendron, Lepidocarpon,	
TT */ TTT	Williamsonia, Lagenostoma, Lyngiopteris.	
Unit III	MICROBES AND MICROBIAL TECHNOLOGY	
	Preparation of non-selective and selective media	
	Culture methods (pour plate, slant & broth)	
	Enumeration of bacteria (plate count) from soil and water	13
	Observation of motility of bacteria (hanging drop technique)	
	Staining methods: simple, negative and Gram staining	
	Biochemical tests for bacteria	
	Bacterial growth curve	
	Test for coliform bacteria	
	Spoilage of milk by microorganisms (methylene blue test)	
	Antibiotic assay	
Unit IV	ALGAL BIOTECHNOLOGY	
	Introduction to microalgae	
	Collection of microalgae	

	 Phytoplankton net Culturing of microalgae (<i>Chlorella or Spirulina</i>) Enumeration of microalgae Diversity indices of microalgae Freshwater quality assessment using Palmer & Nygaard's index 	13
Unit V	 Estimation of chlorophyll in algae Estimation of dissolved oxygen Estimation of primary productivity Introduction to macroalgae Culturing of macro algae / seaweed (demo only) Commercial products from macroalgae 	13

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		
Dr. R. Rakkimuthu			
Dr. P. Sathish Kumar			

Department	Botany		
Course	M Co. Dotony	Effective from the	
Course	M.Sc., Botany	Year: 2016	
Subject Code: 16PBY205			
Title	: CYTOLOGY, ANATOMY AND EMBRYOLOGY	Semester: 2	
Hrs/Week:	5	Credits: 4	
Objectives	To understand the structure of cells in relation to the functional aspects		
	 To study the internal structure of various tissue systems and organs. 		
	To know the mechanisms processes in the reproductive phase of plants		

Unit	Content	Hrs
Unit I	CYTOLOGY: Structural organization of the plant cell - cell wall -	
	primary and secondary - plasma membrane - structure, models and	
	functions, channels, pumps and receptors - plasmodesmata - ultra	13
	structure of chloroplast and mitochondria - chloroplast and	
	mitochondrial genomes - structure and functions of glyosomes,	
	peroxisomes, spherosomes and lysosomes - ultra structure of nucleus -	
	Structure and organisation of chromosomes.	
Unit II	ANATOMY: General account and theories of organization of shoot	
	apex and root apex - quiescent centre and modern concept on	
	meristems - structural diversity, functional complexity and	13
	phylogenetic trends in specialization of complex permanent tissues	
	(xylem and phloem) - cambium - origin - structure, storied and non-	
	storied types - formation of cork cambium, and periderm - anomalous	
	secondary growth in dicot and monocot.	
Unit III	ANATOMY: Vascular differentiation in primary and secondary	
	structure of root and stem in dicot and monocot - origin of lateral roots	
	- root stem transition - anatomy of dicot and monocot leaves -	13
	stomatal types - nodal anatomy - petiole anatomy - trichomes - glands	
	- secretory tissues – nectaries - laticifers and their significance.	
Unit IV	EMBRYOLOGY: Microsporangium - microsporogenesis -	
	microspores - arrangement - morphology - ultrastructure -	
	microgametogenesis - pollen - stigma - incompatibility - methods to	13
	overcome incompatibility - megasporangium - megagametogenesis -	
	female gametophyte - monosporic - bisporic and tetrasporic - nutrition	
	of embryo sac and fertilization.	
Unit V	EMBRYOLOGY: Endosperm - types - endosperm haustoria -	
	cytology and physiology of endosperms - functions of endosperms -	13
	embryo development in dicot and monocot - nutrition of embryo -	
	polyembryony- apomixis - apospory.	

- 1. Bhojwani, S.S. and Bhatnagar, S.P. 1986. The Embryology and Angiosperms. Vikas publishing house pvt. Ltd, New Delhi.
- 2. Easu, K. 1985. Plant Anatomy, Wiley Eastern Pvt. Ltd., New Delhi.
- 3. Johri, B.M. (ed) 1983. Embryology of Angiosperms, Springer-Verlag, New York.
- 4. Pandey, B.P. 1993. Plant anatomy, S. Chand & Co, New Delhi.

- 1. Baker, J.R. 1966. Cytological Techniques (5th ed.), Methuen, London.
- 2. Bierhorst, D.W. 1971. Morphology of vascular plants. Macmillan publishers, New York.
- 3. Maheshwari, P. 1963. Recent Advances in Embryology of Angiosperms. Intl. Soc. Plant Morphologists, New Delhi.
- 4. Pullaiah, T., Lakshiminarayana, K. and Hanumantha Rao, B. 2006. Text book of Embryology of Angiosperms. Regency Publications, New Delhi.
- 5. Raghuvanshi, R.K., Chauhan, A.K.S. and Siddiqui, B.A. 1995. Practical exercises in Cytology, genetics, Plant Breeding and Biostatistics. CBS Publishers & Distributors, New Delhi.
- 6. Swanson, P. and Webster, P. 1977. The Cell. Prentice Hall, Inc. Englewood Cliffs, New Jersey, USA.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		

Department	Botany		
Course	M.Co. Dotony	Effective from the	
Course	M.Sc., Botany	Year: 2016	
Subject Code	: 16PBY206	Semester: 2	
Title	: PLANT PHYSIOLOGY	Semester: 2	
Hrs/Week:	5	Credits: 4	
Objectives	• To understand the concepts involved in the functions of plants		
	To study the recentaspects of various physiological pro	cesses in plants.	

Unit	Content	Hrs
Unit I	Water and plant cells - water balance of the plant - mineral nutrition -	
	Uptake, transport and translocation of water, ions, solutes and	
	macromolecules from soil, through cells, across membranes, through	13
	xylem and phloem – transpiration - mechanisms of loading and	
	unloading of photoassimilates - Signal transduction: receptors and G-	
	proteins, phospholipids signaling - role of cyclic nucleotides, calcium -	
	calmodulin cascade - protein kinases and phosphatases - specific	
	signaling mechanisms (two component sensor – regulator system).	
Unit II	Photosynthesis: evolution of photosynthetic apparatus - photosynthetic	
	pigments and light harvesting complexes - photooxidation of water -	
	mechanism of electron and proton transport - carbon assimilation -	13
	calvin cycle - photoprotective mechanisms - CO ₂ fixation - C ₃ , C ₄ and	
	CAM pathways - Respiration and photorespiration: citric acid cycle -	
	plant mitochondrial electron transport and ATP synthesis - alternate	
	oxidase - photorespiratory pathway - RUBISCO - significance of	
	photorespiration.	
Unit III	Nitrogen metabolism: Nitrate and ammonium assimilation - amino acid	
	biosynthesis - Phytohormones: biosynthesis and mechanism of action	
	of phytohormones - auxin, gibberellin, cytokinin, ethylene and ABA -	13
	apoptosis - Sensory photobiology: structure, function and mechanisms	
	of action of phytochromes, cryptochromes and phototropins - stomatal	
	movements - photoperiodism and biological clocks.	
Unit IV	Carbohydrate metabolism – regulation of starch and sucrose	
	biosynthesis, synthesis and degradation of cellulose - pectin	
	biosynthesis and enzymes involved in pectin degradation - organic acid	13
	metabolism - metabolism and roles of oxalic acid, ascorbic acid and	
	malic acid - Lipid metabolism: synthesis of membrane lipids, structural	
	lipids and storage lipids and their catabolism - gluconeogenesis.	

Unit V	Secondary metabolites - Shikimate pathway and its role in biosynthesis	
	of secondary metabolites - biosynthesis of terpenes, phenols and	
	nitrogenous compounds and their roles - Stress physiology: responses	13
	of plants to biotic (pathogen and insects) and abiotic (water,	
	temperature and salt) stresses - mechanisms of resistance to biotic	
	stress and tolerance to abiotic stress.	

- 1. Jain, V.K. 2000. Fundamentals of Plant Physiology (5th ed.), S. Chand & Co Ltd; New Delhi.
- 2. Pandey, S.N. and Sinha, B.K. 2010. Plant Physiology, Vikas Publishing, New Delhi.

- 1. Devlin, R.M. and Baker, N.R. 1973. Photosynthesis, Reinhold Affiliated East-West Press Pvt. Ltd, New Delhi.
- 2. Moore, T.C. 1979. Biochemistry and physiology of plant hormones. Narosa book Distributors, New Delhi.
- 3. Roberts, E.A. 1987. Plant growth regulators. Kluwer Academic publishers, London.

Verified by HOD Name	CDC	COE
with Signature		
Dr. E. Neelamathi		
	with Signature	with Signature

Department	Botany	
Course	M.Sc., Botany	Effective from the Year: 2016
Subject Code : Title	: 16PBY207 : GENETICS AND PLANT BREEDING	Semester: 2
Hrs/Week:	5	Credits: 4
Objectives	 To understand the heredity and the variation of inherited characteristics To study the gene behavior its distribution and mutations To acquire knowledge on various breeding methods To learn the applications of induced mutations 	

Unit	Content	Hrs
Unit I	Classical genetics: Mendelian genetics – interaction of genes, modified mendelian ratio - genetics of multiple alleles - penetrance and expressivity – pleiotropism, pseudoalleles, and phenocopies - quantitative inheritance - sex linked, sex influenced inheritance (special reference to plants) - genetics of sex determination - chromosome mapping – reverse genetics and epigenetics.	13
Unit II	Extra-nuclear inheritance: cytoplasmic inheritance – chloroplast – mitochondrial genome in higher plants - DNA as genetic material, transposable elements - population genetics - Hardy-Weinberg Law - gene pool, gene frequency and genotype frequency.	13
Unit III	Classification of mutations - gene mutations - spontaneous and induced mutations - physical and chemical mutagens - molecular basis of gene mutation - point and frame shift and suppressor mutation - gene regulatory mechanisms (prokaryotes & eukaryotes) - genetic disorders in human.	13
Unit IV	Modern Genetics: Gene mapping methods based on test-cross and F2 progenies - LOD score analysis - tetrad analysis and its significance - somatic cell genetics and its use in mapping - molecular markers for genome mapping - principles and methods of QTL mapping - RNA interference (RNAi) - PTGS, RNAi and related phenomena - genetic analysis using RNAi - high-throughput small RNA profiling - RNAi microarrays.	13
Unit V	Introduction to breeding of cultivated plants - significance of breeding - polyploidy and haploids in plant breeding - Breeding techniques: Selection techniques: Types of selection -selection in segregating populations - pedigree method, bulk method and back cross method.	13

Hybridization: Intervarietal, interspecific and intergeneric hybridization -	
heterosis - hybrid vigour - marker assisted breeding - national and	
international organizations for crop improvement.	

- 1. Gardener, E.J. 1975. Principles of Genetics (5th ed.), John wiley, New York.
- 2. Gupta, P.K. 1994. Genetics, Rashtogi Publication, Meerut, India
- 3. Singh, E.D. 1990. Plant Breeding. Kalyani Publishers, New Delhi.

- 1. Allard, R.W. 1960. Principles of Plant Breeding, John Wiley and Sons, Inc. New York.
- 2. Gilber, N.W. 1978. Organellar heredity, Revan press, New York.
- 3. King, R.C. 1975. A Hand book of Genetics, Plenum Press, New York.
- 4. Simmonds, N.W. 1979. Principles of Crop improvement. Longman, London.
- 5. Strickberger, M.V. 1977. Genetics, Macmillan publishers, New York.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		

Department	Botany	
Course	M.Sc., Botany	Effective from the Year: 2016
Subject Code Title	: 16PBY208 : CORE PRACTICAL II	Semester: 2
Hrs/Week:	5	Credits: 4
Objectives	 To study the physiological processes in the plant system To acquire practical knowledge on cell and tissue development and organization To know the inheritance in plants and breeding techniques. 	

Unit	Content	Hrs
Unit I	CYTOLOGY	
	1. Study of cells (Prokaryotic and Eukaryotic)	
	2. Chromosome morphology	13
	3. Specialized chromosomes	
	4. Mitotic and meiotic divisions	
Unit II	ANATOMY	
	1. Preparation of sections of stem, root and leaf	
	2. Staining of various plant tissues	13
	3. Anomalous secondary thickening in monocot and dicots.	
	4. Microtomy	
	5. Maceration techniques	
	6. Slide submission (Microtomy – 5, free hand sections – 5)	
Unit III	EMBRYOLOGY	
	1. Anther development	
	2. Female gametophyte	13
	3. Endosperm-types and haustoria	
	4. Dissection of embryos	
	5. Polyembryony	
Unit IV	PLANT PHYSIOLOGY	
	1. Rate of transpiration under varying climatic factors	
	2. Rate of photosynthesis under varying CO ₂ concentration in	13
	water plants.	
	3. Rate of respiration using Ganongs respiroscope	
	4. Separation of plant pigments by thin layer, paper and	
	column chromatography.	
	5. Estimation of chlorophyll and carotenoid pigments	
	6. Determination of total antioxidant activity by	
	phosphomolybdenum reduction method.	

Unit V	GENETICS AND PLANT BREEDING	
	1. Mendelian inheritance	13
	2. Non – mendelian inheritance	
	3. Plant breeding techniques	

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		
Dr. P. Sathish Kumar			
Dr. C. Anbarasu			

Department	Botany		
Caura	M.Co. Dotony	Effective from the	
Course	M.Sc., Botany	Year: 2016	
Subject Code	Subject Code: 16PBY2N1		
Title	: MUSHROOM CULTIVATION	Semester: 2	
Hrs/Week:	1	Credits: 2	
Objectives	To impart skills on mushroom cultivation, an agro based industry		
	To have an idea on the intricacies of mushroom cultivation		

Unit	Content	Hrs
Unit I	Introduction – morphology –types of mushroom – identification of edible and poisonous mushroom – nutritive and medicinal values – life cycle of common edible mushrooms.	3
Unit II	Methods of mushroom cultivation (Hanging bag, bed and rack method) – prospects and scope of mushroom cultivation in small scale industry.	3
Unit III	Life cycle of <i>Pleurotus, Agaricus, Volvariella, Calocybe</i> and <i>Lentinus</i> – breeding and genetic improvement of mushroom strains.	2
Unit IV	Cultivation – conditions for tropical and temperate countries, isolation – spawn production – growth media – spawn running and harvesting of mushrooms.	2
Unit V	Diseases and post harvest technology – harvesting - freezing, dry freezing, drying, packaging and marketing - recipes from mushrooms.	2

- 1. Hand book of mushroom cultivation, 1999, TNAU publication.
- 2. Nita Bhal. (2000). Handbook on Mushrooms. 2nd ed. Vol. I and II. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
- 3. Tripathi, D. P. (2005). Mushroom Cultivation. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.

- 1. Alice, D., Muthusamy and Yesuraja, M. (1999). Mushroom Culture. Agricultural College, Research Institute Publications, Madurai.
- 2. Pathak, V. N. and Yadav, N. (1998). Mushroom Production and Processing Technology. Agrobios, Jodhpur.
- 3. Tewari Pankaj Kapoor, S. C. (1988). Mushroom Cultivation. Mittal Publication, New Delhi.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. P. Sathish Kumar	Dr. E. Neelamathi		

Department	Botany	
Course	M.Sc., Botany	Effective from the Year: 2016
Subject Code: 16PBY2N2 Title: BIOINFORMATICS		Semester: 2
Hrs/Week:	1	Credits: 2
Objectives • To gain knowledge on Bioinformatics and databases		
	To understand the applications of bioinformatics tools	

Unit	Content	Hrs
Unit I	Fundamentals of computers: Introduction and scope of bioinformatics, Introduction to computers - types of hardware and	3
	software operating systems - internet - world wide web-search engines - their functions - searching - file formats, telnet, ftp.	
Unit II	Biological Databases - sequence and structure- data retrieval - searching source data bases - sequence similarity searches - FASTA and BLAST, CLUSTAL and PHYLIP - use of nucleic acids and protein data banks - NCBI, EMBL, DDBJ, SWISSPROT - multiple sequence alignment.	3
Unit III	Data analysis: Sequence analysis, pair wise alignment and data base search - phylogenetic analysis, profiles and motifs - protein structure visualization - prediction of function from a sequence.	2
Unit IV	Chemical composition of biomolecules DNA and RNA - Structure of DNA - development of DNA sequence methods - gene finding and feature detection in DNA.	2
Unit V	Sequencing of databases: Pair wise sequence comparison, sequencing proteins, genome sequencing, SAGE, biological data bases - drug designing - Human genome project and gene therapy.	2

- 1. Andreas D. Baxevanis and B.F. Francis overlette, 2002. Bio-informatics, John wiley& Sons.
- 2. Attwood, T. K. and Parry Smith, D. J. 1999. Introduction to bioinformatics Addison Wesley congman Limited, England.
- 3. Chowdhary, K. R., and Bansal. V. S. 2011. Bioinformatics and computational technologies. 1 stedn. Scientific publishers, New Delhi.
- 4. Ignacimuthu, S.J. 2005. Basic Bio-informatics, V.K. Mehra, Narosa publishing house.

- 1. Des Higgins, Willie Taylor, 2004. Bio-informatics, Oxford university press.
- 2. Dunn, S. R. and Pennington, M. J. 2002. Proteomics from protein sequences to function 3rdedn. Viva books Pvt., Ltd, New Delhi.
- 3. Gibas and Jamback. Developing Bioinformatics Computer skills, O- Rielly Associates
- 4. Harshishtha,D.,.2006. Techniques in teaching computers. International book distributor, Dehradun.
- 5. Irfan alikhan, AtiyaKhanum, 2003. Essentials of Bio-informatics, Ukaaz publications.
- 6. Primrose, S. B., and Twyman, R. M., 2003. Principles of genome analysis and genomics.
- 7. Rastpgo, S, N. Mendinatta and P. Rastogi. 2003. Bio-informatics—Concepts, skills and application. CBS. publication, New Delhi

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		

Department	Botany	
Course	M So. Potony	Effective from
Course	M.Sc., Botany	the Year: 2016
Subject Code: 16PBY309 Title: PLANT SYSTEMATICS		Semester: 3
Hrs/Week:	5	Credits: 5
Objectives	 To learn nomenclature systems and to identify the plants To introduce modern trends in taxonomy To know the economic uses of plants 	

Unit	Content	Hrs
Unit I	A brief historical account of the classification of angiosperms upto	
	the present day. Systems of classification: Detailed study of	13
	Bentham & Hooker, Engler & Prantl, Bessy, Hutchinson,	
	Takhtajan, Cronquist – Merits and demerits - International code of	
	Botanical Nomenclature - Typification, Principles of priority and	
	their limitations, Effective and valid publication, citation, retention,	
	choice and rejection of names.	
Unit II	Vegetative, floral characters and economic importance of the	
	following families: Polypetalae: Portulacaceae, Menispermaceae,	
	Caryophyllaceae, Zygophyllaceae, Oxalidaceae, Polygalaceae,	13
	Tiliaceae, Aizoaceae, Lythraceae, Combretaceae.	
Unit III	Vegetative, floral characters and economic importance of the	
	following families: Gamopetalae: Oleaceae, Apocynaceae,	
	Gentianaceae, Boraginaceae, Pedaliaceae, Bignoniaceae,	13
	Monochamydeae: Loranthaceae, Nyctaginaceae, Chenopodiaceae,	
	Monocots: Commelinaceae, Aroideae, Cyperaceae.	
Unit IV	Flora, Monograph, Keys, Botanical gardens – Source of taxonomic	
	information, Anatomy, Embroyology, Palynology, Cytology and	
	Ultra structure and phyto chemistry.	13
Unit V	Biosystematics- its aim and scope - Biosystematic categories -	
	phenotypic plasticity - Turrreson's work - population concept-	
	species and genus concepts – Genecology – ecological	13
	differentiation – numerical taxonomy.	

- 1. A classification of flowering plants Vol. I & II Rendle A.R. Cambridge University press.
- 2. Taxonomy of vascular plants. Lawerance.H.M. Mac Millan & Co.
- 3. Principles of Numerical Taxonomy. Sokal, S.R and Sneath P.H, N.H Fremen& co.

- 4. New concepts in flowering plants taxonomy. Heslop. J. Herrison.
- 5. Plant Taxonomy Hey wood, V.H. English hand book society
- 6. Principles and methods of Plant Biosystematics-solbrig. The Mac Millian Company.
- 7. An introduction to plant Nomenclature. S.S.R. Bennet international Book distribution India.
- 8. An aid to the International code of Botanical. Hentry A.N. Today & Tomorrow Pvt. Ltd.
- 9. Principles of angiosperm Taxonomy. Devis& Hey wood Krieger publication Co.
- 10. Introduction to Principles of Plant Taxonomy Sivarajan Oxford & IBH Pvt. Company.
- 11. A hand book of field and Herbarium methods Jain S.K. and Rao R.R. Today and Tomorrow Publications.
- 12. Plant Taxonomy and Biosystematics. Staceclive. A Edward Arnold.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. P. Sathish kumar	Dr. E. Neelamathi		
Dr. C. Anbarasu			

Department	Botany	
Course	M.Sc., Botany	Effective from the Year: 2016
Subject Code Title: BIOC		Semester:3
Hrs/Week:	5	Credits: 4
Objectives	To know the biochemical molecules of life	1
	To understand the biophysical laws governing universe	

Unit	Content	Hrs
Unit I	Acids and bases, strength of acids – strong acids, weak acids - inization of	
	water - Kw, pH - dissociation of acids - pKa, Henderson - Hasselbalch	13
	equation. Buffers - definition, chemical composition, characteristics of	
	buffer, buffer action, buffer capacity - biological role of buffer system -	
	measurement of pH – colorimetric methods and electrometric methods.	
Unit II	Carbohydrates: structure and biological functions - monosaccharides:	
	classification, structure - oligosaccharides: structure, formation; common	
	examples – sucrose, lactose - polysaccharides: classification, functions –	13
	structure of cellulose, starch and glycogen - sugar derivatives:	
	glycoproteins, proteoglycans, mucoproteins.	
Unit III	Lipids: classification, properties, functions - structure of fatty acids,	
	essential fatty acids - storage lipids - triglycerols - structural lipids -	
	membrane lipids - lipid biosynthesis, fat breakdown – β oxidation.	13
Unit IV	Amino acids: structure and classification of amino acids - biosynthesis of	
	amino acids - proteins classification of proteins based on structure and	
	function - oligo- and polypeptides - primary structure - peptide bond -	13
	secondary structure – Ramachandran plots, α-helix, β sheet - tertiary	
	structure –quaternary structure- functions of proteins	
Unit V	Enzymes: General characters of enzymes - IUB system of enzyme	
	classification - mechanism of enzyme activity - factors affecting enzyme	
	activity - enzyme kinetics - Michaelis-Menton kinetics - regulation of	13
	enzyme activity - allosteric effect - enzyme inhibition - reversible and	
	irreversible inhibition, competitive, non-competitive, uncompetitive -	
	dixon plot - cofactors and coenzymes.	

- 1. Satyanarayana, U. 2005. Biochemistry. Books and Allied (P) Ltd. Calcutta.
- 2. Lehninger, A.I. 1987. Biochemistry, Kalyani Publishers, New Delhi
- 3. Veerakumari, I. 2004. Biochemistry, MJP Publishers, Chennai.

- 4. Campbell, M.K. 1999. Biochemistry, Saunders College Publishing, NewYork.Harborne, J.B. 1999.Plant Biochemistry.Chapman & Hall, New Delhi.Jain, J.L. 2005. Fundamentals of Biochemistry. S. Chand & Co. New Delhi.
- 5. Plummer, D.T. 1996. An introduction to practical biochemistry.McGraw Hill.
- 6. Conn E.E. and P.K. Stumpf. 1987. Outlines of Biochemistry, Wiley Eastern Ltd, Chennai.
- 7. LubertStryer. 1986. Biochemistry, CBS Publishers, New Delhi.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. R. Rakkimuthu	Dr. E. Neelamathi		
Dr. P. Sathish Kumar			

Department	Botany	
Course	M.Sc., Botany	Effective from the Year: 2016
Subject Code: 16PBY311 Title: RESEARCH METHODOLOGY Semester		Semester:3
Hrs/Week:	5	Credits: 4
Objectives	 To equip students with the knowledge of scientific data analysis and presentation. To teach the skills to write research documents To provide the knowledge on handling softwares in research analysis 	

Unit	Content	Hrs
Unit I	Research: concept & objectives - types of research: descriptive vs. analytical, applied vs. fundamental, quantitative vs. qualitative, conceptual vs. empirical — research methodology: formulation of research problem — hypothesis development - research process - steps and elements - analysis of the problem — research writing: preparation of research report — presentations - proposals - writing	13
Unit II	thesis/dissertation and article – LaTeX and manuscript preparation. Literature collection and citation: Bibliography – bibliometrics (scientometrics): definition - laws (Lotka's Law, Bradford's Law and Zipf's Law) - Bibliometrics indicators and indices – citation index - SCI- h-index – page rank - impact factor and evaluation - citation styles (APA, MLA, Chicago, Vancouver and Harvard) - citations and bibliography using Biblioscape – plagiarism and antiplagiarism softwares (Plagiarism checker, Copyleaks, Viper and Turnitin).	13
Unit III	Biostatistics : data collection & representation: graph and tabulation - measures of central tendency: mean (arithmetic), median and mode - measures of dispersion: standard deviation - standard error —co-efficient of variation - measures of significance: Chi-Square test — F-test - t- test — correlation - scatter diagram - Spearman's rank correlation coefficient - regression coefficients - lines of regression & their properties - analysis of variance (ANOVA-single factor) — multivariate analysis — probability of distribution (binomial, poisson and normal).	13
Unit IV	Softwares for Biostatistics : MS- EXCEL – spreadsheet – chart sheet – database - data representation (tabulation and graphing) – formulas and statistical functions (mean, median, standard deviation; F-test, t-test,	13

	CORREL and ANOVA) – SPSS – data editor & viewer – data analysis (Chi-square, t-test, correlation, regression and ANOVA (single factor) – graphing.	
Unit V	Instrumentation: Microscopy (phase contrast, fluorescent, SEM, SEM and digital) - Colorimeter - Spectrophotometer (UV, visible, IR and AAS) - Spectroscopy (FTIR & NMR) - pH Meter - Centrifuges - Lyophilizer - Separation techniques: Chromatography (HPLC and GC-MS) - Electrophoresis (Agarose and PAGE) - ELISA reader - PCR.	13

- 1. Mount, D. W. 2004. *Bioinformatics*: sequence and genome analysis. *Cold Spring Harbour Laboratory Press*.
- 2. Kothari, C.R. Research Methodology: Methods and Techniques (2nd revised edition). 2008. *New Age International.*

REFERENCE BOOKS

- 3. M.H. Cordon and R. Macrae, 1987. Instrumental analysis in the Biological Science, Blackie and Son Limited, London.
- 4. Sadasivan and Manickam, Biochemical Methods.
- 5. Jayaraman, J. Laboratory Manual of Biochemistry.
- 6. Harborne, Phytochemical methods.
- 7. Prasad and Prasad, Microtechnique.
- 8. Rajiv, K. Sinha and Shweta Sinha, 2005. Ethnobiology, Surabi Publications, Jaipur.

Journals:

- 1. Journal of Mixed Methods Research.
- 2. Journal of Research Methods and Methodological Issues.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		
Dr. P. Sathish Kumar			

Department	Botany	
Course	M.Sc., Botany	Effective from the Year: 2016
Subject Code Title: GENO	: 16PBY3E2 DMICS AND PROTEOMICS	Semester:3
Hrs/Week:	5	Credits: 5
Objectives	 To detail the various web based resources for biological information. To provide a platform for molecular understanding of the structure-function relations in DNA/RNA/Proteins. 	

Unit	Content	Hrs
Unit I	Bioinformatics: Introduction to bioinformatics – dogmas of life –	
	central and peripheral - applications – biological databases – NCBI, EBI	13
	and Genome net – archieves and information retrieval – gateways to	
	archieves – data warehousing and mining.	
Unit II	Genomics: Genome analysis – prokaryotic and eukaryotic gene	
	structure – c- value paradox – internal organization of structural genes –	
	genome sequencing - clone based sequencing - shot gun method -	13
	identification of genes in contigs – CpG islands – ORF – chromosomal	
	rearrangements – Human genome project.	
Unit III	Sequence alignment – pairwise alignment - methods – scoring matrices	
	- PAM and BLOSUM - multiple sequence alignment - evaluation and	
	applications of multiple sequence alignment – phylogenetic analysis –	13
	phylogenetic trees - methods of phylogenetic analysis - distance	
	method – character based method – tree evaluation – tools for	
	phylogenetic analysis.	
Unit IV	Gene identification and prediction – pattern recognition – gene	
	prediction methods – gene finding by ORF prediction – homology	
	based approaches – statistical and HMM approaches - searching for CG	13
	islands and protein binding sites – gene prediction tools.	
Unit V	Proteomics: Structure based protein classification approaches – protein	
	structure databases - protein structure visualization tools - tools for	
	protein structure prediction - primary and secondary structure analysis	13
	and prediction – motifs, profiles, patterns and fingerprints search.	
	Proteomics classification - Tools and techniques in proteomics.	

- 1. Rastogi, S. C., N. Mendiratta, and P. Rastogi (2008), Bioinformatics Methods and applications, Genomics, Proteomics and Drug discovery, PHI Learning pvt Ltd., New Delhi.
- 2. Baxevanis and Quellette (1998). Bioinformatics. A practical guide to analysis of genes and proteins.
- 3. Arthur M.Lesk (2002) Introduction to Bioinformatics.

- 4. Bioinformatics: A biologist's guide to biocomputing and the internet. 2000. Stuart M. Brown.
- 5. Introduction to Bioinformatics. 1999. T.K.Attwood and Parry-Smith.
- 6. Introduction to Bioinformatics. 2002. S.Sundararajan and R.Balaji.
- 7. Bioinformatics: Sequence and genome analysis. 2001. David W. Mount. SEM.IV

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		

Department	Botany		
Course	M.Sc., Botany	Effective from	
Course	Wi.Sc., Botany	the Year: 2016	
•	Subject Code: 16PBY312 Title: CORE PRACTICAL-III Semester:3		
Hrs/Week:	5	Credits: 4	
Objectives • To know the vegetative and floral characters of angiosperms.			
	To understand the techniques of herbarium		
	To get hands on experience with bioinformatics tools		

Unit	Content	Hrs
Unit I	PLANT SYSTEMATICS	
	Study of the vegetative, floral characters & economic	13
	importance of all the families given in the theory	
	Preparation of artificial key	
	• Submission of herbarium sheets – 30.	
Unit II	BIOINFORMATICS	
	An introduction to the computing platforms.	
	Molecular databases.	13
	 Database searches (BLAST and FASTA). 	
	Prediction of ORF, splice sites & promoter elements of DNA.	
	Gene finding strategies in genomic DNA.	
	Estimating protein secondary structure and physical attributes.	
	Multiple sequence alignment.	
	Secondary structure of proteins.	
	Molecular modeling and visualization.	
	Getting familiar with SPSS.	
	Calculating the measures of central tendency, dispersion.	
	Hypothesis Testing.	
	Comparing Means using SPSS.	
	Correlation & regression analysis using SPSS.	

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		
Dr. P. Sathish Kumar			
Dr. C. Anbarasu]		

Department	Botany	
Course	M.Sc., Botany	Effective from the Year: 2016
Subject Code : Title : CORE	16PBY313 PRACTICAL-IV	Semester: 3
Hrs/Week:	5	Credits: 4
Objectives	 To understand the techniques of biomolecular estimation To know the qualitative tests for bioactive compounds To get a knowledge on OFFICE tools to solve statistical problems. 	

Unit	Content	Hrs
Unit I	BIOCHEMISTRY:	
	1. Estimation of starch by Anthrone method.	13
	2. Estimation of protein Lowry's method.	
	3. Estimation of lipid.	
	4. Estimation of amino acids.	
	5. Determination of enzyme activities – Catalase, Ascorbic acid oxidase and	
	polyphenol oxidase.	
	6. Qualitative estimation of phenols, flavonoids and alkaloids.	
Unit II	RESEARCH METHODOLOGY	
	1. Research process	
	2. Hypothesis development	
	3. Research writing	
	3.1. How to write a research proposal?	
	3.2. How to write a research report?	
	3.3. Thesis writing	
	3.4. Manuscript preparation using latex	
	4. Bibliometrics	
	5. Bibliometrics index	
	6. Citation index	
	7. Citation styles	
	8. Bibliography and biblioscape	
UnitIII	BIOSTATISTICS	
	Collection, analysis and graphical representation of data	
	2. Measures of central tendency - mean, median and mode	13
	3. Measures of dispersion: range, standard deviation, coefficient of variation	
	correlation	
	4. Test of significance - Chi-square test and Student't' test.	
	5. Simple exercises in MS- Word	
	6. Presentation in MS-Powerpoint	
	7. Statistical calculations and chart preparation in MS-Excel	
	8. Creation of database in MS-Access.	

Compiled by Name with Signature	Verified by HOD Name with Signature	CDC	COE
Dr. R. Rakkimuthu	Dr. E. Neelamathi		
Dr. C. Anbarasu			

Department	Botany		
Cauraa	M.S.a. Dotony	Effective from the	
Course	M.Sc., Botany	Year: 2016	
Subject Code	: 16PBY414	Sam astaw 1	
Title:	PLANT BIOTECHNOLOGY	Semester:4	
Hrs/Week:	5	Credits: 4	
Objectives	Objectives • To acquire knowledge on plant tissue culture		
To provide detailed information about the tissue culture		re practices	
	To cover information about the biotechnology to agric	ulture, in raising	
	transgenic plants		

Unit	Content	Hrs
Unit I	Genome organization and protein targeting: general organization of nuclear, mitochondrial and chloroplast gene - targeting of proteins synthesized in cytoplasm to chloroplast, mitochondria of plants – <i>Arabidopsis</i> – genome size and organization.	13
Unit II	Structure and expression of gene: tissue specific genes - structure and organization of nuclear genes concerning storage proteins, phytochrome, microbial infection and other stresses - maize transposable elements - organization and function of transposons.	13
Unit III	Development of plant transformation cassettes: Structure and function of Ti plasmid of <i>Agrobacterium</i> - mechanism of T-DNA transfer to plants - Ti plasmid vectors for plant transformation - promoter and marker genes in plant transformation.	13
Unit IV	Gene transfer and tissue culture techniques: physical, chemical and biological methods for plant gene transfer – micropropagation - shoot-tip culture - callus and cell suspension culture - haploid production - rapid clonal propagation - somoclonal variation - somatic embryogenesis - somatic hybridization - cybrids - synthetic or artificial seeds.	13
Unit V	Transgenic plants for virus resistance - herbicide tolerance - delay of fruit ripening - resistance to insect, fungi and bacteria - production of antibodies, viral antigens and peptide hormones in plants – RNAi mediated crop improvement – ethics in plant biotechnology – IPR.	13

- 1. Slater A. Scott N. and Fowler M. 2008. Plant Biotechnology: The Genetic Manipulation of Plants. Oxford University Press Inc.
- 2. Satyanarayanan U. 2007.Biotechnology.Books and Allied (P) Ltd., Kolkata.

- 3. Lea, PJ, Leegood, RC . 1993. Plant Biochemistry and Molecular Biology. eds. John Wiley and Sons, Chichester and New York.
- 4. Mahesh S. 2008 Plant Molecular Biotechnology. New Age International Publishers.
- 5. Ramavat K.G. 2006 Plant Biotechnology S. Chand and Co. Ltd., New Delhi
- 6. Trivedi P.C. 2000 Plant Biotechnology Recent Advances. Panima Publication Corporation, New Delhi
- 7. Ignacimuthu S. 1998 Plant Biotechnology. Oxford and IBH
- 8. Reynolds P.H.S 1999. Inducible Gene Expression in Plants. CABI Publishing, U.K.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		
Dr. R. Rakkimuthu			

Department	Botany		
Course	M.Sc., Botany	Effective from the Year: 2016	
	: 16PBY415 RONMENTAL MANAGEMENT AND CONSERVATION IODIVERSITY	Semester: 4	
Hrs/Week:	5	Credits: 4	
Objectives	and their consequences.To give an insight to the students as how	sight to the students as how to exploit various strategies to solve these environmental hazards, with	

Unit	Content	Hrs
Unit I	Current status of environment - issues and challenges - climate	
	change - greenhouse gases: sources, trends and role - ozone layer and	13
	ozone hole - consequences of climate change (CO ₂ sequestration, global	
	warming, sea level rise, UV radiation) - El-Nino and La Nina phenomenon	
	- environmental monitoring: meaning and scope - concept of biomonitoring	
	and biological indicator	
Unit II	Environmental management: definition and basic concepts - environmental	
	impact assessment (EIA): Scope, importance and application of EIA	
	process - eco-restoration/remediation - ecological foot prints - carbon foot	13
	print - ecolabeling - environmental auditing & standards -	
	certification& accreditation- SO standards for environmental management	
	systems (EMS) - ISO 14000 14001 & 26001 - OHSAS 18001.	
Unit III	Environmental agencies: EPA - MAB - UNEP - MoEn&F - treaties,	
	agreements and conventions: Geneva convention (1979) Vienna	
	convention (1985) - convention on biological diversity (CBT) -	13
	Convention on International Trade in Endangered Species of Fauna and	
	Flora (CITES, 1973) Montreal protocol (1987) - Earth summit 1992 &	
	2002 - Convention on biodiversity (1992) - United Nations Framework	
	Convention on Climate Change (UNFCCC) - Kyoto protocol (1997) -	
	Antarctic treaty (2004).	
Unit IV	Biodiversity: Biodiversity concepts and definitions - genetic diversity,	
	species diversity and ecosystem diversity - agro biodiversity and cultivated	

	taxa - loss of biodiversity - threats to biodiversity: natural and anthropogenic - IUCN threat categories: red data book and red lists - conservation of biodiversity: <i>in situ</i> conservation – sanctuaries, national parks, biosphere reserves, MPCA, MPDA, mangroves, coral reefs, sacred groves - <i>ex-situ</i> conservation: botanical gardens. arborata and palmate - herbaria, gene banks, seed banks.	13
Unit V	National and international organizations in conservation of biodiversity – IUCN, NBPGR, BSI, ICAR, CSIR, DBT, DST, NBSAP, NGOs - biodiversity legislation and conventions - international biodiversity laws - biodiversity register - national biodiversity legislation – national biodiversity bill (2000) –biological diversity act (2002) - trade restrictions - economic, legal and ethical issues of biodiversity - Indian case studies on conservation/management strategy (project tiger & project elephant).	13

Text books

- 1. Krishnamurthy, K.V. 2004. An advanced textbook on Biodiversity: Principles and practice.
- 2. Oxford and IBH. Publ. Co. New Delhi. 260p.
- 3. Singh, J.S., Singh, S.P. & Gupta, S.R. 2006. Ecology, Environment and Resource Conservation. Anamaya Publ., New Delhi. 688Pp.
- 4. Cunningham, P. and Mary Ann Cunningham, 2007. Principles of Environmental Science. The McGraw-Hill, New Delhi.

Reference Books:

- 1. Chiras, D. D., 2009. Environmental Science, 8th edition, Jones and Bartlett Publishers, Sudbury, Massachusetts (www.jbpub.com).
- 2. Groombridge, B. (Ed.) 1994. Global Biodiversity status of the Earth's living
- 3. resources. Chapman & Hall, London.
- 4. Melchias, G. 2001. Biodiversity and Conservation. Oxford IBH. New Delhi. 236Pp.
- 5. Odum E.P. Gray, W. Barrelt 2004.Fundamentals of Ecology.15th edition. Thomas Asia Pvt. Ltd.
- 6. Chapman, J.L. and Reiss, M.J. 1999. Ecology; Principles and Applications.II Ed. Cambridge University Press. New York.
- 7. Putman, R.J. and S.D. Wratten. 1984. Principles of Ecology. University of California Press, Berkeley and Los Angels.
- 8. Sharma PD. 2001. Ecology and Environment. Rastogi Publications, Meerut.
- 9. Burden F. R., McKelvie I., Forstner U., and Guenther A., 2002, Environmental Monitoring Handbook, McGRaw-Hill, New York.
- 10. Goldsmith F. B., 1995, Monitoring for Conservation and Ecology. London: Chapman and Hall.

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr.R.Rakkimuthu	Dr. E. Neelamathi		
Dr. P.Sathish Kumar			

Department	Botany			
Caura	M.Co. Dotony	Effective from the		
Course	M.Sc., Botany	Year: 2016		
Subject Code Title: FORE	: 16PBY4E3 CST BOTANY	Semester: 4		
Hrs/Week:	5	Credits: 5		
Objectives	To study the forest ecosystem and associated components			
	To study the parameters to measure the forest cover			
	To import knowledge on conservation measures for forest			

Unit	Content	Hrs
Unit I	Forest – introduction - definition – classification - forest types and their components: montane forests (evergreen, coniferous, sholas and grasslands); terrestrial forests (semi evergreen, deciduous, moist deciduous, dry deciduous and scrubs jungles); tidal forests (salt marsh and mangroves).	13
Unit II	Dendrology: introduction - importance and scope of dendrology - general forms of woody trunk and deviations (buttresses, flutes, crooks) - morphology and description of barks of common trees - characteristics of blaze on bark, colour, gums, and latex - morphology of leaf, description of different types of leaves, - colour of young and old leaves as features of identification - reproductive morphology of plants - description and identification of reproductive parts.	
Unit III	Forest mensuration - introduction - definition - objectives and scope of forest mensuration. Scales of measurement (nominal, ordinal, interval and ratio scale) - measurement of single tree - standard rules - measurement of tree diameter and girth using rulers, callipers and tapes - bark measurements - objectives, thickness, surface area and volume - crown measurements - objectives, diameter, height, surface area and volume - height measurements - (direct and indirect methods) - height measuring	13

	instruments - Abney's level.	
Unit IV	Wood science: Microscopic structure of wood: vessels, tyloses, tracheids, fibres, wood parenchyma - wood rays, grain and texture - chemical composition of wood - Physical properties of wood (Colour luster, fluorescence, odour and weight) - mechanical properties of wood - (bending, hardness and shear) - annual rings - identification and classification of wood (early wood and late wood, soft wood and hard wood, pycnoxylic and manoxylic wood) - annual rings - dendrochronology - commercial wood species and identification - synthetic woods - plywood - fuel wood - pulp and paper making woods - match stick wood.	13
Unit V	Forest – conservation and management: Strategies for conservation - <i>In situ</i> conservation: (afforestation, social forestry, agro forestry, botanical gardens, biosphere reserves, national parks, sanctuaries, sacred groves and sthalavrikshas) - <i>ex situ</i> conservation (cryopreservation, gene banks, seed banks, pollen banks, DNA banks, tissue culture and biotechnological strategies) - silviculture – elements and systems - clear felling, simple coppice and selection felling ethnobotany - forest conservation through laws - the biological diversity Act (2002 in force) - world conservation strategy (WCS) and National biodiversity strategy and action plan (NBSAP)	13

- 1. Daniel, Helms and Baker, 1979. Principles of Silviculture McGraw-Hill Book 1. Company.
- 2. Chaturvedi, A.N. and L.S. Kanna. 1982. A handbook on Forest Mensuration. International Book Distributors.
- 3. Avery, T.E. 1967. Forest Measurements. Mc Grand Hill Book Company, Newyork.
- 4. Ramprakash. (1986). Forest management. IBD Publishers, Debra Dun.

- 1.Khanna, L. S. 1984. Principles and Practice of Silviculture, Khanna Bhandu, Dehra Dun. P. 476.
- Ram Prakash and L.S. Khanna. 1991. Theory and Practice of Silvicultural systems.
 International Book Distributors, Dehra Dun.
- 3. Sagreiya, K.P. Forests and Forestry, 1997. National Book Trust India.
- 4. Anonymous. 1976. Indian forest utilization. Volume I and II ICFRE Publication, Dehradun.
- 5. Mehta, T. 1981. A handbook of forest utilization. Periodical Expert Book Agency, Delhi. 298 p.
- 6. Rao, K.R. and Juneja, K.B.S. 1992. Field identification of 50 important timbers of India. ICFRE Publi. Dehradun 123 p.
- 7. Gupta, T. and Guleria, A. 1982. Non-wood forest products in India: Economic potential. Oxford and IBH Publication, New Delhi. 147 p.
- 8. Bor, N.L (2010). A Manual of Indian Forest Botany, (Second Edition) Asiatic pub., New Delhi Page 53 of 96.
- 9. Negi, S.S. (2001), Forest Policy and Law, International Book Distributing Co. Dehradun.
- 10. Rahman, C.A. (2009), Compilation of Forest Policy and Law. International Book Distributing Co.Dehradun

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. P.Sathish Kumar	Dr. E. Neelamathi		
Dr. C. Anbarasu			

Department	Botany	
Course	M.Sc., Botany	Effective from the Year: 2016
Subject Code Title : CORI	: 16PBY416 E PRACTICAL-V	Semester:4
Hrs/Week:	5	Credits: 4
Objectives	 To understand the concepts of plant tissue culture techniques To study the vegetation and analyse its properties To acquire knowledge on forest and its nature. 	

Unit	Content	Hrs
Unit I	PLANT BIOTECHNOLOGY:	
	1. Isolation of genomic DNA from plants	13
	2. Qualitative and quantitative analysis of plant genomic DNA	
	3. Protein separation by SDS-PAGE	
	4. Preparation of Plant Tissue Culture Media	
	5. <i>In vitro</i> germination of seeds.	
Unit II	6. Callus induction	
	7. Meristem culture	
	8. Micropropagation	
	9. Production of artificial seeds	
	10. Preparation of competent cell- E. coli and Agrobacterium	
	11. Agrobacterium-mediated gene transformation to plants.	
	12. Amplification of a plant gene using PCR	
Unit III	Environmental management and Conservation of biodiversity	
	1. Vegetation analysis- Quadrate method and Belt transect methods.	13
	2. Estimation of total biomass and herbage yield by harvest method.	
	3. Water analysis for dissolved oxygen and carbon-di-oxide.	

	4. Calculation of pollution indices			
	4.1 Bio-accumulation			
	5. Environmental impact Assessment			
	6. Carbon foot printing			
	7. Biodiversity indices			
	8. Ex-situ conservation			
	9. Case studies – Environmental Management			
Unit IV	FOREST BOTANY:			
	1. Determination of age of tree	13		
	2. Phenology studies			
	3. Germination studies – percentage, competition.			
	4. Physical features of wood – height, diameter, density,			
	moisture.			
Unit V	5. Anatomical features of wood – porous, non-porous, ring-			
	porous, diffused-porous, different kinds of wood parenchyma			
	rays.	13		
	6. Menstruation – measurement of tree height and diameter			
	7. Species diversity index – (Shannon wiener index, Simpson			
	diversity index)			
	8. Mapping studies			
	8.1 Forest types (Evergreen, Semi evergreen, Deciduous and			
	Mangrove)			

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. P. Sathish Kumar	Dr. E. Neelamathi		
Dr. C. Anbarasu			

Department	Botany	
Course	M.Sc., Botany	Effective from the Year: 2016
Subject Code: 16PBY4P1 Title: PROJECT WORK AND VIVA VOCE		Semester: 4
Hrs/Week:	6	Credits: 8
Objective :	 To get knowledge on research To improve knowledge on instrumentation To provide the knowledge on handling software in research analysis 	

Compiled by	Verified by HOD Name	CDC	COE
Name with Signature	with Signature		
Dr. E. Neelamathi	Dr. E. Neelamathi		