### P.G. DEPARTMENT OF COMPUTER SCIENCE

Nallamuthu Gounder Mahalingam College

(Autonomous)

(An ISO 9001:2008 Certified Institution)

**Re-Accredited with 'A' Grade by NAAC** 

Pollachi-642001



**SYLLABUS** 

**M. Sc. COMPUTER SCIENCE** 

BATCH 2019-2021

#### NGM COLLEGE

#### VISION

Our dream is to make the College an institution of excellence at the national level by imparting quality education of global standards to make students academically superior, socially committed, ethically strong, spiritually evolved and culturally rich citizens to contribute to the holistic development of the self and society.

#### MISSION

Training students to become role models in academic arena by strengthening infrastructure, upgrading curriculum, developing faculty, augmenting extension services and imparting quality education through an enlightened management and committed faculty who ensure knowledge transfer, instill research aptitude and infuse ethical and cultural values to transform students into disciplined citizens in order to improve quality of life.

#### PG DEPARTMENT OF COMPUTER SCIENCE

#### VISION

Exploring innovative approaches to enhance learning opportunities through the integration of technology and to develop more responsive strategies for adapting curriculum and changing demands in the Computing Profession.

#### MISSION

To provide strong theoretical foundation complemented with extensive practical training. Provide a learning ambience to enhance innovations, problem solving skills, leadership qualities, team spirit, ethical responsibilities Г

### Scheme of Examination

| I SEMESTER |                       |                                                                      |                             |       |     |        |       |         |          |
|------------|-----------------------|----------------------------------------------------------------------|-----------------------------|-------|-----|--------|-------|---------|----------|
|            |                       |                                                                      | ı in<br>er                  |       | Ex  | aminat | ion   |         |          |
| Part       | Subject<br>Code       | Title of the Paper                                                   | Duration<br>Hours p<br>week | Hours | CIA | ESE    | Total | Credits | Page No. |
|            | 19PCS101              | Android Programming                                                  | 5                           | 3     | 25  | 75     | 100   | 4       | 1        |
|            | 19PCS102              | Analysis & Design of<br>Algorithms                                   | 5                           | 3     | 25  | 75     | 100   | 4       | 3        |
|            | 19PCS103              | Advanced Networks                                                    | 5                           | 3     | 25  | 75     | 100   | 4       | 5        |
| ш          | 19PCS104              | Data Mining and<br>Warehousing                                       | 5                           | 3     | 25  | 75     | 100   | 4       | 7        |
|            | 19PCS105              | Programming Lab - I:<br>Android Programming                          | 5                           | 3     | 40  | 60     | 100   | 4       | 9        |
|            | 19PCS106              | Programming Lab –II:<br>Analysis & Design of<br>Algorithms           | 5                           | 3     | 40  | 60     | 100   | 4       | 11       |
|            |                       | II                                                                   | SEMEST                      | ER    |     |        |       |         |          |
|            | 19PCS207              | Data Analytics using Python<br>Programming                           | 5                           | 3     | 25  | 75     | 100   | 4       | 13       |
|            | 19PCS208              | Information Security and<br>Cryptography                             | 4                           | 3     | 25  | 75     | 100   | 4       | 15       |
|            | 19PCS209              | Big Data Analytics                                                   | 4                           | 3     | 25  | 75     | 100   | 4       | 17       |
| III        | 19PCS210              | Programming Lab -III :<br>Data Analytics                             | 4                           | 3     | 40  | 60     | 100   | 4       | 19       |
|            | 19PCS211              | Programming Lab-IV :<br>Scala Programming                            | 4                           | 3     | 40  | 60     | 100   | 4       | 21       |
|            | 19PCS212              | Programming Lab-V :<br>Unified Modeling Language<br>and R Tool       | 3                           | 3     | 40  | 60     | 100   | 4       | 23       |
|            | 19PCS2EX              | Elective – I                                                         | 5                           | 3     | 25  | 75     | 100   | 5       | 26       |
| IV         | 19PCS2N1/<br>19PCS2N2 | Non Major Elective:<br>Multimedia Packages Lab<br>/Web Designing Lab | 1                           | 3     | -   | 100    | 100   | 2       | 32       |

|             |                 |                                                                  | _ |       | I   | Examina | tion  |         |          |
|-------------|-----------------|------------------------------------------------------------------|---|-------|-----|---------|-------|---------|----------|
| Part        | Subject<br>Code | Title of the paper                                               |   | Hours | CIA | ESE     | Total | Credits | Page No. |
|             | 19PCS313        | Angular JS                                                       | 4 | 3     | 25  | 75      | 100   | 4       | 35       |
|             | 19PCS314        | Digital Image Processing                                         | 5 | 3     | 25  | 75      | 100   | 4       | 37       |
| ш           | 19PCS315        | Internet of Things                                               | 5 | 3     | 25  | 75      | 100   | 4       | 39       |
|             | 19PCS316        | Programming Lab-VI :<br>Angular JS                               | 5 | 3     | 40  | 60      | 100   | 4       | 41       |
|             | 19PCS317        | Programming Lab-VII: Digital<br>Image Processing using<br>MATLAB | 5 | 3     | 40  | 60      | 100   | 4       | 42       |
|             | 19PCS3EX        | Elective-II                                                      | 5 | 3     | 25  | 75      | 100   | 5       | 45       |
| IV SEMESTER |                 |                                                                  |   |       |     |         |       |         |          |
| III         | 19PCS418        | Project Work and Viva voce<br>(Individual)                       | - | -     | -   | 200     | 200   | 10      | 52       |
|             | TOTAL MARKS     |                                                                  |   |       |     |         |       | 90      |          |

#### III SEMESTER

### **ELECTIVE I**

| S.No | SUBJECT CODE | TITLE                  | Page No. |
|------|--------------|------------------------|----------|
| 1    | 19PCS2E1     | COMPUTING TECHNOLOGIES | 26       |
| 2    | 19PCS2E2     | SOFT COMPUTING         | 28       |
| 3    | 19PCS2E3     | MOBILE COMPUTING       | 30       |

### **ELECTIVE II**

| S.No | SUBJECT CODE | TITLE                                         | Page No. |
|------|--------------|-----------------------------------------------|----------|
| 1    | 19PCS3E1     | ARTIFICIAL INTELLIGENCE AND<br>EXPERT SYSTEMS | 45       |
| 2    | 19PCS3E2     | MACHINE LEARNING                              | 47       |
| 3    | 19PCS3E3     | EMBEDDED SYSTEMS                              | 49       |

#### **Bloom's Taxonomy Based Assessment Pattern**

#### K1-Remember; K2- Understanding; K3- Apply; K4-Analyze; K5- Evaluate

#### 1. Theory: 75 Marks

#### (i)Test- I & II and ESE:

| Knowledge<br>Level | Se                    | ction               | Marks   | Description   | Total |
|--------------------|-----------------------|---------------------|---------|---------------|-------|
|                    |                       | Q.1 to 5            | 10 1 10 | MCQ           |       |
| K1 & K2            | A(Answer all)         | Q.6 to 10           | 10x1=10 | Define        |       |
| K3                 | B (Either or pattern) | Q.11 to 15          | 5x5=25  | Short Answers | 75    |
|                    |                       | Q.16 is compulsory  |         |               |       |
| K4 & K5            | C (Answer 4 out of 6) | Q.17 to 21          | 4x10=40 | Descriptive/  |       |
|                    |                       | (Answer 3 out of 5) |         | Detaileu      |       |

#### 2. Practical Examinations:

| Knowledge Level | Section                 | Marks | Total |
|-----------------|-------------------------|-------|-------|
| K3              | Practical & Record work | 60    |       |
| K4              |                         | 40    | 100   |
| K5              |                         | 40    |       |

#### Note:

1. Question paper pattern for Non-Major Elective(NME) Practical Paper (Maximum Marks: 100 Marks)

Two questions from Computer Science Practical - 80 marks

Marks for Record

**Components of Continuous Assessment** 

\_

20 marks

| Comp               | onents | Calculation          | CIA Total |
|--------------------|--------|----------------------|-----------|
| Test 1             | 75     | 75 - 75 - 25         |           |
| Test 2             | 75     | $\frac{13+13+23}{7}$ | 25        |
| Assignment/Seminar | 25     |                      |           |

#### **Programme Outcomes**

- **PO1**. Develop core competence in computer science and prepare the students to take up a career in the IT industry as well as in research and development.
- **PO2**. Ability to inculcate various thrust areas of computer science with sound knowledge of theory and hands-on practical skills.

#### **Programme Specific Outcomes**

- **PSO1:** Ability to design, implement and evaluate a computer based systems, process, component or program to meet desired needs.
- **PSO2:** Ability to analyze advantages and disadvantages of different computer science methods within professionally and academically complex areas to compete with new variants of acquired methods.
- **PSO3:** Ability to employ in industry, government or entrepreneurial endeavors to demonstrate professional advancement through significant technical achievements and expanded leadership responsibilities.
- **PSO4:** To provide foundation for research into the theory and practice of programming and design of computer based systems.
- **PSO5:** To present knowledge, experience, reasoning methods and design and implementation techniques that are robust and forward looking.

# SEMESTER I

| Programme code: | M.Sc     | Programme Title :   | Master of Computer Science |           |
|-----------------|----------|---------------------|----------------------------|-----------|
| Course Code:    | 19PCS101 | Title               | Batch :                    | 2019-2021 |
|                 |          | Android Programming | Semester                   | Ι         |
| Hrs/Week:       | 5        |                     | Credits:                   | 4         |

#### **Course Objective**

On successful completion of the course, the students should have a good understanding on the Mobile Environment and acquired mobile application development skills with Android

#### **Course Outcomes (CO)**

| CONTENTS Hours |     |                                                                                    |  |  |  |
|----------------|-----|------------------------------------------------------------------------------------|--|--|--|
| K5             | CO5 | To evaluate the real time application development using android platform.          |  |  |  |
| K4             | CO4 | To analyze the functions of various sensors.                                       |  |  |  |
|                |     | by using SQLite database                                                           |  |  |  |
| КЗ             | CO3 | To deploy a basic application that acts as a working example with various concepts |  |  |  |
|                |     | various controls, fragments and examples.                                          |  |  |  |
| K2             | CO2 | To get an idea of the UI - components, event handling, and screen orientation,     |  |  |  |
|                |     | configuration files, intents, and activities and layouts                           |  |  |  |
| K1             | CO1 | To keep in mind about the operation of the application, application lifecycle,     |  |  |  |

#### UNIT I

Android: Introduction – Android's Fundamental Components – Exploring the Structure of an Android Application – Examining the Application Life Cycle. Introduction to Android Application Architecture: Exploring a simple Android Application – Defining UI through Layout Files – Specifying Comments in Layout Files – Adding Views and View groups in Layout Files – Specifying Control Properties in Layout Files – Indicating View Group Properties – Controlling Width and Height of a Control – Introducing Resources and Backgrounds – Working with Text Controls in the Layout File – Working with Auto generated IDs for Controls – Loading the Layout File into an Activity – Gathering Controls – Placing the Files in the Android Project – Android Activity Life Cycle – Resources. UNIT II User Interface Development and Controls: UI Development in Android - Building a UI Completely in Code - Building a UI Completely in XML - Building a UI in XML with Code.

Android's Common Controls: Text Controls – Button Controls – The ImageView Control – Date and Time Controls – The MapView Control. Adapters and List Controls: SimpleCursorAdapter – ArrayAdapter – The Basic List Control ListView – The GridView Control – The Spinner Control – The Gallery Control – Styles and Themes – Layout Managers - Menus and Action Bars

#### Unit III

Fragments:Introduction-Use of Fragments-The Structure of Fragment-Sample Program of<br/>Fragment .Broadcast Receivers-Coding a Simple Receiver-Registering a Receiver-Multiple<br/>Receivers. SQLite:Saving State using SQLite-SQLite Packages and Classes\_Creating an<br/>SQLite Database-Migrating a Database-Inserting Rows-Deleting Rows-<br/>Reading Rows-<br/>Exploring Databases on the Emulator and available devices-Content Providers13UNIT IV14

 Touch Screens and Sensors: Understanding Motion Events – The Motion Event Object –
 13

| Recycling Motion Events – Using Velocity Tracker – Multi-touch – Gestures. <b>Implementing</b>   |          |  |
|--------------------------------------------------------------------------------------------------|----------|--|
| <b>Drag and Drop:</b> Exploring Drag and Drop – Basics of Drag and Drop in 3.0+ – Drag-and-      |          |  |
| Drop Example Application. Sensors: Introduction – Detecting Sensors – Getting Sensor             |          |  |
| Events – Interpreting Sensor Data.                                                               |          |  |
| UNIT V                                                                                           |          |  |
| Application Security and Deployment: Security and Permissions – Understanding the                | 10       |  |
| Android Security Model – Performing Runtime Security Checks – Deploying the Application:         | 13       |  |
| Becoming a Publisher – Preparing the Application for Sale – Uploading the Application.           |          |  |
| Total Hours                                                                                      | 65       |  |
| *Italicized texts are for self study                                                             |          |  |
| Power point Presentations, Seminar, Assignment, Activity, Case study                             |          |  |
| Text Books                                                                                       |          |  |
| 1. Dave MacLean, Satya Komatineni, Grant Allen, 2015, "Pro Android 5", Apress Publications       | 5.       |  |
| 2. Wei-Meng-Lee, 2012, "Beginning Android Tablet Application Development", Wiley Public          | ations   |  |
| Reference Books                                                                                  |          |  |
| 1. Barry Burd, 2016, "Android Application Development – All-in-one for Dummies", 2 <sup>nd</sup> | Edition, |  |
| Wiley India.                                                                                     |          |  |
| 2. Lauren Darcey, Shane Conder, 2013, "Sams Teach Yourself Android Application Developme         | ent in   |  |
| 24 hours", 2nd edition, Pearson Education.                                                       |          |  |
| 3. Paul Deitel, Harvey Deitel, Alexander Wald, 2016, "Android 6 for Programmers - An App-dr      |          |  |
| Approach", 3rd edition, Pearson education.                                                       |          |  |
| 4. Jerome (J. F) DiMarzio, 2015, "Android – A Programmer's Guide", McGraw Hill Education.        |          |  |

 Jerome (J. F) DiMarzio, 2015, "Android – A Programmer's Guide", McGraw Hill Education, 8<sup>th</sup> reprint.

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| CO1       | М    | S    | S    | S    | S    |
| CO2       | М    | М    | Н    | S    | Н    |
| CO3       | М    | Н    | S    | S    | М    |
| CO4       | М    | Н    | М    | М    | Н    |
| CO5       | S    | Н    | М    | М    | Н    |

| Course Designed by   | Verified by HOD     | Checked by             | Approved by               |
|----------------------|---------------------|------------------------|---------------------------|
| Name and Signature   | Name with Signature | CDC                    | COE                       |
| Name: S.Vallinayagam | Name: Dr.M. Sakthi  | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:           | Signature:          | Signature:             | Signature:                |

| Programme code: | M.Sc     | Programme Title :    | Master of Computer Science |           |
|-----------------|----------|----------------------|----------------------------|-----------|
| Course Code:    | 19PCS102 | Title                | Batch :                    | 2019-2021 |
|                 |          | Analysis & Design of | Semester                   | Ι         |
| Hrs/Week:       | 5        | Algorithms           | Credits:                   | 4         |

**Course Objective** On successful completion of the course the students should understand the various design and analysis of various data structure algorithms.

| K1 | C01 | To remember worst case running times of algorithms using asymptotic analysis                                                                                |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| К2 | CO2 | To understand divide-and-conquer paradigm, dynamic-programming paradigm, greedy paradigm and branch and bound strategies and apply them for the appropriate |
|    |     | problems                                                                                                                                                    |
| К3 | CO3 | To deploy different data structures                                                                                                                         |
| K4 | CO4 | To analyze major graph algorithms and to employ graphs to model engineering problems                                                                        |
| K5 | CO5 | To validate divide-and-conquer paradigm and explain when an algorithmic design                                                                              |
|    |     | situation calls for it. Recite algorithms that employ this paradigm                                                                                         |

| CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                            | Hours |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>UNIT I</b><br>Introduction: algorithm definition and specification – performance analysis –Elementary<br>Data structures:- <i>stacks and queues – trees</i> – dictionaries – priority queues – sets and disjoint<br>set union – graphs – Basic traversal and search techniques – Techniques for Binary Tree –<br>Techniques for Graphs: Breadth First Search and Traversal, Depth First Search and<br>Traversal. | 13    |
| <b>UNIT II</b><br><b>Divide – and – conquer:</b> - General method – binary search – merge sort – quick sort –The Greedy method: - General method – knapsack problem – minimum cost spanning tree – single source shortest path.                                                                                                                                                                                     | 13    |
| <b>UNIT III</b><br><b>Dynamic Programming:</b> General method – multistage graphs – all pair shortest path – optimal binary search trees – 0/1 Knapsack – <i>traveling salesman problem</i> – flow shop scheduling.                                                                                                                                                                                                 | 13    |
| <b>UNIT IV</b><br><b>Backtracking:</b> General method – 8-Queens problem – sum of subsets – graph coloring –<br>Hamiltonian cycles – knapsack problem.                                                                                                                                                                                                                                                              | 13    |

| UNIT V                                                                                                                                                                                                                                                                                                 |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| <b>Branch and bound:</b> The method – Least Cost (LC) Search – The 15 puzzle: An Example – Control abstractions for LC Search – Bounding – FIFO Branch and Bound – LC Branch and Bound – 0/1 Knapsack problem – LC Branch and Bound solution – FIFO Branch and Bound solution – Traveling salesperson. | 13                    |
| Total Hours                                                                                                                                                                                                                                                                                            | 65                    |
| *Italicized texts are for self study                                                                                                                                                                                                                                                                   |                       |
| Power point Presentations, Seminar , Assignment, Brain storming                                                                                                                                                                                                                                        |                       |
| <ol> <li>Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, 2008, "Computer Algorithms", 2<sup>nd</sup><br/>Galgotia Publications</li> </ol>                                                                                                                                                       | Edition,              |
| <ul> <li>1. Ellis Horrowitz, Sartaj Sahni, 2015, "Fundamentals of data structures", Reprinted Galgotia Publications</li> <li>2. Alfred V.Aho, John E.Hopcroft &amp; Jeffery D Ullman, 2009, "Data structures and Algo Reprinted Edition, PHI learning pvt Ltd</li> </ul>                               | Edition,<br>writhms", |
| 3. Adam Drozdek, 2012, "Data Structures and Algorithms in C++", 4 <sup>th</sup> Edition, Vikas pu house, NewDelhi                                                                                                                                                                                      | blishing              |

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | S    | S    | М    | Н    | Н    |
| CO2       | Н    | М    | М    | S    | S    |
| CO3       | S    | Н    | S    | М    | М    |
| CO4       | М    | S    | М    | Н    | М    |
| CO5       | М    | S    | Н    | S    | М    |

| Course Designed by Verified by HOD |                     | Checked by             | Approved by               |  |
|------------------------------------|---------------------|------------------------|---------------------------|--|
| Name and Signature                 | Name with Signature | CDC                    | COE                       |  |
| Name: S.Sharmila                   | Name: Dr.M. Sakthi  | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |  |
| Signature:                         | Signature:          | Signature:             | Signature:                |  |

| Programme code: | M.Sc     | Programme Title : | Master of Computer Science |           |
|-----------------|----------|-------------------|----------------------------|-----------|
| Course Code:    | 19PCS103 | Title             | Batch :                    | 2019-2021 |
|                 |          | Advanced Networks | Semester                   | Ι         |
| Hrs/Week:       | 5        |                   | Credits:                   | 4         |

#### **Course Objective**

On successful completion of the course the students should gain in-depth knowledge of Internet protocols and their functionalities.

| K1 | C01 | To recollect OSI and TCP/IP layers and their tasks. Interpret and explain physical, logical |
|----|-----|---------------------------------------------------------------------------------------------|
|    |     | and port addresses                                                                          |
| K2 | CO2 | To comprehend Standard Ethernet and Mapping techniques                                      |
| К3 | CO3 | To deploy Logical addressing and discuss the format of Ipv4 and Ipv6 addresses              |
| K4 | CO4 | To analyze the problems and solutions associated with delivery and forwarding of packets    |
| K5 | CO5 | To present knowledge on Mobile IP, Client-Server interactions                               |
|    |     |                                                                                             |

| CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hours |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| UNIT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Introduction and overview - Network Technologies: Two Approaches To network<br>Communication-Wide Area And Local Area Networks-Ethernet Technology-Switched Ethernet-<br>Asynchronous Transfer Mode. Internetworking Concept and Architectural Model-Classful Internet<br>Addresses: Introduction – Universal Identifiers – Original Classful Addressing scheme – Address<br>Specify Network Connections – Broadcast Address – All 0's Address – Subnet, Multicast,<br>Weakness in Internet Addressing – Dotted Decimal Notation, Loopback Addresses.<br>Mapping Internet Addresses To Physical Addresses(ARP): The Address Resolution Problem-<br>Two Types Of Physical Addresses-Resolution Through Direct Mapping-Resolution Through<br>Dynamic Binding-The Address Resolution Cache-ARP Cache Timeout-ARP Refinements-<br>Relationship Of ARP To Other Protocols-ARP Implementation-ARP Encapsulation And<br>Identification-ARP Protocol Format-Automatic ARP Cache Revalidation-Reverse Address<br>Resolution(RARP). | 13    |
| UNIT II<br>Internet Protocol: Connectionless Datagram Delivery (IPv4): A Virtual Network-Internet<br>Architecture and Philosophy-The Conceptual Service Organization-Connectionless Delivery<br>System-Purpose of the Internet Protocol-The IPv4 Datagram-Internet Datagram Options.<br>Forwarding IP Datagrams: Forwarding In An Internet-Direct And Indirect Delivery-Table-Driven<br>IP Forwarding-Next-Hop Forwarding- The IP Forwarding Algorithm-Forwarding With IP<br>Addresses-Internet Protocol. Error And Control Messages(ICMP): The Internet Control Message<br>Protocol-Error Reporting Vs. Error Correction-ICMP Message Delivery-ICMP Message Format-<br>Testing Destination Reachability And Status(ping)-Echo Request And Reply Message Format-<br>Reports Of Unreachable Destinations-Congestion And Datagram Flow Control-Source Quench<br>Format.                                                                                                                                                     | 13    |
| <ul> <li>UNIT III</li> <li>Classless And Subnet Address Extensions (CIDR): Review Of Relevant Facts-Minimizing Network Numbers-Proxy ARP-Subnet Addressing-Flexibility In Subnet Address Assignment -The Subnet Forwarding Algorithm-A Unified Forwarding Algorithm.</li> <li>Protocol Layering: Introduction –Needs-Conceptual Layer_ Functionality- X.25 and ISO Model-Locus of intelligence-Principle-Network substructure-TCP/IP Model-Disadvantage-Idea behind Multiplexing and Demultiplexing.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13    |

| M.Sc Computer Science Effective from the year 20.                                            | 19 Onwards |
|----------------------------------------------------------------------------------------------|------------|
| User Datagram Protocol (UDP): Identifying The Ultimate Destination-The User Datagram         |            |
| Protocol-Format Of UDP Messages-UDP Pseudo-Header-UDP Encapsulation And Protocol             |            |
| Layering-Layering And The UDP Checksum Computation-UDP Multiplexing, Demultilplexing ,       |            |
| And Ports-Reserved And Available UDP Port Numbers.                                           |            |
| UNIT IV                                                                                      |            |
| Routing Between Peers (BGP): BGP Characteristics-BGP Functionality And Message Types-BGP     |            |
| Message Header-BGP OPEN Message-BGP UPDATE Message-Compressed Mask-Address pairs-            |            |
| BGP path Attributes-BGP KEEPALIVE Message-The Internet Routing Architecture-BGP              |            |
| NOTIFICATION Message. Mobile IP: Mobility, Routing, and Addressing-Mobile IP                 | 13         |
| Characteristics- The Two-Crossing Problem-Communication with Computers on the Home           | 15         |
| Network.                                                                                     |            |
| Client-Server Model of Interaction: Model-UDP Echo Server-Time and Date Service-The          |            |
| Complexity of Servers. Bootstrap and Auto-configuration (DHCP): IP address-Retransmission-   |            |
| Message format-Address Acquisition States.                                                   |            |
| UNIT V                                                                                       |            |
| Remote Login And Desktop (TELNET, SSH): Remote Interactive Computing-TELNET Protocol-        | l          |
| Accommodating Heterogeneity-Passing Commands That Control The Remote Side-Forcing The        | 13         |
| Server To Read A Control Function-TELNET Options-TELNET Option Negotiation-Secure Shell      | 15         |
| (SSH)-Other Remote Access Technologies. File Transfer and Access (FTP, TFTP, NFS)-Electronic | l          |
| mail (SMTP, POP, IMAP, MIME)-World Wide Web (HTTP)- A Next Generation IP (IPv6).             | 1          |
| Total Hours                                                                                  | 65         |
| *Italicized texts are for self study                                                         |            |
| Power point Presentations, Seminar ,Assignment, Experience Discussion, Brain stormin         | ıg         |
| Text Book                                                                                    |            |
| 1. Douglas E. Comer, 2015, "Internetworking with TCP/IP Volume I", Prentice Hall.            |            |
| Reference Books                                                                              |            |
|                                                                                              |            |

- 1. Douglas E. Comer, David L.Stevens, 2010, "Internetworking with TCP/IP Volume II", Prentice Hall.
- 2. Uyless Black, 2005, "TCP/IP & Related Protocols", Tata McGraw-Hill.
- 3. Menezes.A, Van Oorschot.P and Vanstone. S, 2011, "Hand Book of Applied Cryptography", CRC Press.

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | Н    | S    | М    | Н    | S    |
| CO2       | S    | М    | S    | S    | Н    |
| CO3       | М    | S    | S    | Н    | М    |
| CO4       | М    | Н    | Н    | М    | Н    |
| CO5       | М    | М    | Н    | М    | М    |

| Course Designed by    | Verified by HOD     | Checked by             | Approved by               |
|-----------------------|---------------------|------------------------|---------------------------|
| Name and Signature    | Name with Signature | CDC                    | COE                       |
| Name: R. Nandha Kumar | Name: Dr.M. Sakthi  | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:            | Signature:          | Signature:             | Signature:                |

M.Sc Computer Science

Effective from the year 2019 Onwards

| Programme code: | M.Sc     | Programme Title : | Master of Computer Science |           |
|-----------------|----------|-------------------|----------------------------|-----------|
| Course Code:    | 19PCS104 | Title             | Batch :                    | 2019-2021 |
|                 |          | Data Mining and   | a Mining and Semester I    |           |
| Hrs/Week:       | 5        | Warehousing       | Credits:                   | 4         |

#### **Course Objective**

On successful completion of the course the students should understand the concept of data mining, classification and clustering techniques, Association rules and data warehousing.

| K1                                                                                            | C01                                            | To remember the basic concepts of Data Mining and Data Warehouse Technic           | ques    |  |  |  |
|-----------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|---------|--|--|--|
| K2                                                                                            | CO2                                            | To get the idea of raw data to make it suitable for various data mining algorithms |         |  |  |  |
| K3                                                                                            | CO3                                            | To execute and measure interesting patterns from different kinds of databases      |         |  |  |  |
| K4                                                                                            | CO4                                            | To analyze the techniques of clustering, classification, association finding,      | feature |  |  |  |
|                                                                                               | selection and visualization to real world data |                                                                                    |         |  |  |  |
| K5                                                                                            | CO5                                            | To evaluate the performance of different data-mining algorithms                    |         |  |  |  |
|                                                                                               |                                                | CONTENTS                                                                           | Hours   |  |  |  |
| UNIT I                                                                                        | [                                              |                                                                                    |         |  |  |  |
| Introd                                                                                        | uction: E                                      | Basic data mining tasks - Data Mining versus Knowledge discovery in                |         |  |  |  |
| databas                                                                                       | ses – data                                     | a mining issues – data mining metrics – social implications of data mining –       | 13      |  |  |  |
| data mi                                                                                       | ning fron                                      | n a database perspective.                                                          | 15      |  |  |  |
| Data n                                                                                        | nining te                                      | chniques: Introduction – a statistical perspective on data mining-similarity       |         |  |  |  |
| measur                                                                                        | es-decisio                                     | on trees-neural networks-genetic algorithms.                                       |         |  |  |  |
| UNIT ]                                                                                        | Ι                                              |                                                                                    |         |  |  |  |
| Classi                                                                                        | fication:                                      | Introduction - Statistical - based algorithms - distance - based algorithms -      | 13      |  |  |  |
| decision tree - based algorithms - neural network - based algorithms -rule - based algorithms |                                                |                                                                                    |         |  |  |  |
| $-\mathrm{com}^{2}$                                                                           | bining tec                                     | hniques                                                                            |         |  |  |  |
| UNIT ]                                                                                        | II                                             |                                                                                    |         |  |  |  |
| Cluster                                                                                       | ring: Intro                                    | oduction – Similarity and distance measures – Outliers.                            |         |  |  |  |
| Hierar                                                                                        | chical alg                                     | gorithms: Agglomerative algorithms – Divisive clustering.                          | 13      |  |  |  |
| Partiti                                                                                       | oned algo                                      | orithms: Minimum Spanning tree – Squared error clustering algorithm – K –          | 15      |  |  |  |
| means                                                                                         | clustering                                     | g - Nearest neighbor algorithm - PAM algorithm - Bond energy algorithm -           |         |  |  |  |
| Cluster                                                                                       | ing with g                                     | genetic algorithm – Clustering with neural networks.                               |         |  |  |  |
| UNIT I                                                                                        | [V                                             |                                                                                    |         |  |  |  |
| Associa                                                                                       | ation rul                                      | es: Introduction - large item sets. Basic algorithms: Apriori algorithm -          |         |  |  |  |
| Sampli                                                                                        | ng algori                                      | thm – Partitioning. Parallel & distributed algorithms: Data parallelism –          |         |  |  |  |
| Task pa                                                                                       | arallelism                                     | . Comparing approaches, Incremental rules.                                         | 13      |  |  |  |
| Advan                                                                                         | ced asso                                       | ciation rules techniques: Generalized association rules - Multiple level           |         |  |  |  |
| associa                                                                                       | tion rules                                     | s - Quantitative association rules - Using multiple minimum supports -             |         |  |  |  |
| Correla                                                                                       | tion rules                                     | . Measuring the quality of rules.                                                  |         |  |  |  |
| UNIT Y                                                                                        | V                                              |                                                                                    | 12      |  |  |  |
| Data '                                                                                        | Warehou                                        | sing: Introduction - characteristics of a data warehouse - data marts - other      | 13      |  |  |  |

aspects of data mart. **Online analytical processing:** Introduction - OLTP & OLAP systems– data modeling – star schema for multidimensional view – data modeling – multifact star schema or snow flake schema–OLAPTOOLS–State of the market – OLAP TOOLS and the internet. **Developing a Data Warehouse:** why and how to build a data warehouse –data warehouse architectural strategies and organization issues - design consideration – data content – metadata - distribution of data – tools for data warehousing – performance considerations –crucial decisions in designing a data warehouse. *Applications of data warehousing and data mining in government* 

#### **Total Hours**

65

*\*Italicized* texts are for self study

Power point Presentations, Seminar, Assignment, Case study

#### **Text Books**

- 1. Margaret H. Dunham, 2008, "Data Mining introductory and advanced topics", 3<sup>rd</sup> Edition, Pearson Education.
- 2. Prabhu C.S.R, 2000, "Data Warehousing concepts, techniques, products and a applications", 3<sup>rd</sup> Edition, PHI.

#### **Reference Books**

- 1. Jiawei Han & Micheline Kamber, 2006, "Data Mining Concepts & Techniques", 2<sup>nd</sup> Edition, Academic Press.
- 2. Arun K.Pujari, 2003, "Data Mining Techniques", Revised Edition, Universities Press (India) Pvt.Ltd.

#### MAPPING

| PS0<br>C0  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------|------|------|------|------|------|
| C01        | S    | S    | S    | Н    | S    |
| CO2        | Н    | М    | Н    | S    | Н    |
| CO3        | S    | Н    | М    | М    | М    |
| <b>CO4</b> | М    | Н    | Н    | S    | S    |
| CO5        | М    | Н    | S    | S    | L    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name: N.Yasodha    | Name: Dr.M. Sakthi  | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

| Programme code: | M.Sc     | Programme Title :   | Master of Computer Science |   |
|-----------------|----------|---------------------|----------------------------|---|
| Course Code:    | 19PCS105 | Title               | <b>Batch :</b> 2019-       |   |
|                 |          | Programming Lab-I:  | Semester                   | Ι |
| Hrs/Week:       | 5        | Android Programming | Credits:                   | 4 |

#### **Course Objective**

On successful completion of the course the students should be equipped with skills for analyzing, designing, developing and troubleshooting android applications.

| К3 | C01 | To execute Java programming language to build Android applications and use          |
|----|-----|-------------------------------------------------------------------------------------|
|    |     | development tools in the Android development environment.                           |
| K4 | CO2 | To figure out UI-rich applications using all the major UI components like Fragments |
|    |     | and the Action Bar, Layouts, various controls.                                      |
| K5 | CO3 | To access and manipulate data using Content Providers, Shared Preferences and       |
|    |     | Notifications with SQLite database.                                                 |

- 1. Create a simple program to display a "HelloWorld" on screen
- 2. Create an application using Text Controls
- 3. Create an application using Button Controls
- 4. Create an application using AutocompleteTextView Control
- 5. Create an application using MultiAutocompleteTextView Control
- 6. Create an application using RadioButton, Control
- 7. Create an application using ImageView Control
- 8. Develop an application using Date Control
- 9. Create an application using Time Control
- 10. Create a program using TextClock and Analog Controls
- 11. Create a program using ListView Controls
- 12. Create a program using Spinner Controls
- 13. Create a program using Gallery Controls
- 14. Create a program using GridView Controls
- 15. Create a program using MapView Controls
- 16. Create an android application using styles and themes.
- 17. Create a program using GridView Controls
- 18. Create an application using different types of layout managers.
- 19. Develop an application using Menus and Actionbars
- 20. Create an application using Fragements
- 21. Create an application using Fragements
- 22. Develop an application using Broadcast Receivers
- 23. Develop an application using SQLite Database
- 24. Create an application to implement Drag and Drop concept
- 25. Develop an application using single touch and multi touch
- 26. Develop an application to display the various sensors available in an android device
- 27. Develop an application to measure and display gravity from accelerometers

#### MAPPING

| PS0<br>C0 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | М    | S    | М    | S    | Н    |
| CO2       | М    | М    | S    | S    | Н    |
| CO3       | М    | S    | Н    | М    | М    |

| Course Designed by   | Verified by HOD     | Checked by             | Approved by               |
|----------------------|---------------------|------------------------|---------------------------|
| Name and Signature   | Name with Signature | CDC                    | COE                       |
| Name: S.Vallinayagam | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:           | Signature:          | Signature:             | Signature:                |

M.Sc Computer Science

Effective from the year 2019 Onwards

| Programme code: | M.Sc     | Programme Title :    | Master of Computer Science |           |
|-----------------|----------|----------------------|----------------------------|-----------|
| Course Code:    | 19PCS106 | Title                | Batch :                    | 2019-2021 |
|                 |          | Programming Lab-II:  | Semester                   | Ι         |
| Hrs/Week:       | 5        | Analysis & Design of | Credits:                   | 4         |
|                 |          | Algorithms           |                            |           |

#### **Course Objective**

On successful completion of the course the students should understand the concepts of various data structures.

#### **Course Outcomes (CO)**

| K3 | C01 | To implement appropriate data structure for given contextual problem           |
|----|-----|--------------------------------------------------------------------------------|
| K4 | CO2 | To analyze complexities of various data structure algorithms                   |
| K5 | CO3 | To prove appropriate data structure is applied to specified problem definition |

| Pı  | ogram to implement the concept for           |                                                    |
|-----|----------------------------------------------|----------------------------------------------------|
| 1.  | Permutation Generator                        | 12. Insertion of element into heap                 |
| 2.  | Towers of Hanoi                              | 13. Implementation of 8-Queens problem             |
| 3.  | Circular Queue                               | 14. Traveling sales man problem                    |
| 4.  | Stack using Linked list                      | 15. Knapsack using Greedy Method                   |
| 5.  | Doubly linked list                           | 16. Minimum Cost Spanning tree                     |
| 6.  | Tree traversal(inorder, preorder, postorder) | 17. Optimal Binary Search                          |
| 7.  | Graph traversal Using Depth first search     | 18. 0/1 Knapsack problem using dynamic programming |
| 8.  | Graph traversal Using Breadth first search   | 19. All pairs shortest path                        |
| 9.  | Binary search                                | 20. Flow shop scheduling.                          |
| 10. | Merge sort using divide and conquer          | 21. Knapsack problem using backtracking            |
| 11. | Quick sort                                   |                                                    |
|     |                                              |                                                    |

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | Н    | S    | S    | Н    | S    |
| CO2       | S    | М    | Н    | S    | Н    |
| CO3       | S    | Н    | S    | М    | S    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name: S.Sharmila   | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

# **SEMESTER II**

| Programme code: | M.Sc     | <b>Programme Title :</b>    | Master of Computer Science |           |
|-----------------|----------|-----------------------------|----------------------------|-----------|
| Course Code:    | 19PCS207 | Title                       | Batch :                    | 2019-2021 |
|                 |          | Data Analytics using Python | Semester                   | II        |
| Hrs/Week:       | 5        | Programming                 | Credits:                   | 4         |

#### **Course Objective**

On successful completion of this course the students should understand the core principles of the Python Language and use the tools to produce well designed programs in python and create effective GUI applications.

| K1 | C01 | To remember the principles of structured programming Recognize and construct             |
|----|-----|------------------------------------------------------------------------------------------|
|    |     | common programming idioms: variables, loop, branch, subroutine, and input/output.        |
| K2 | CO2 | To understand the common programming idioms: variables, loop, branch, subroutine,        |
|    |     | and input/output                                                                         |
| К3 | CO3 | To deploy the concepts of lists, tuples, dictionaries, standard libraries, modular       |
|    |     | programming and the design of user interfaces                                            |
| K4 | CO4 | To figure out ability to analyze and solve the problems using advanced facilities of the |
|    |     | Python language                                                                          |
| K5 | C05 | To evaluate and apply the functions and python libraries to analyze and solve various    |
|    |     | data analytics problems                                                                  |

| CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hours |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <ul> <li>UNIT I</li> <li>Introduction to Python: Introduction – Python overview – Getting started – Comments – Python identifiers – Reserved keywords – Variables – Standard data types – Operators – Statements and Expressions – String operations – Boolean expressions.</li> <li>Classes and Objects: Overview of OOP – Data encapsulation – Polymorphism – Class definition – Creating objects – <i>Inheritance</i> – Multiple inheritances – Method overriding – Data encapsulation – Data hiding.</li> </ul>                                                                                                                                                                                                                                                                   | 10    |
| <ul> <li>UNIT II</li> <li>Control Statements and Functions: Control Statements: The for loop – While statement – if elif else statement – Input from keyboard. Functions: Introduction – Built-in functions – Type conversion – Type coercion – Date and time – dir() function – help() function – User defined functions – Parameters &amp; arguments – Function calls – The return statement – Python recursive function.</li> <li>Strings and Lists: Strings – Compound data type – len function – String slices – String traversal – Escape characters – String formatting operator – String formatting functions.</li> <li>Lists – Values and accessing elements – Traversing a list – Deleting elements from list – Built-in list operators – Built-in list methods.</li> </ul> | 10    |
| UNIT III<br>Tuples and Dictionaries: Tuples – Creating tuples – Accessing values in tuples – Tuple assignment –<br>Tuples as return values – Basic tuple operations – Built-in tuple functions<br>Dictionaries – Creating dictionary – Accessing values in dictionary – Updating dictionary – Deleting<br>elements from dictionary – Operations in dictionary Built-in dictionary methods.                                                                                                                                                                                                                                                                                                                                                                                            | 10    |

| M.Sc Computer Science Effective from the year 2019                                                    | 0nwards |
|-------------------------------------------------------------------------------------------------------|---------|
| Files and Exceptions: Introduction to File Input and Output-Using loops to process files-Processing   |         |
| Records-Exception.                                                                                    |         |
| UNIT IV                                                                                               |         |
| GUI Programming: Graphical user Interface, Using the tkinter Module, Display text with Label          |         |
| Widgets-Organizing Widget with Frames-Button Widgets and Info Dialog Boxes, Getting Input with        | 11      |
| Entry Widget using Label as Output Fields, Radio button, Check buttons.                               |         |
| Numpy: Arrays Array indexing data types Array math Broad casting                                      |         |
|                                                                                                       |         |
| UNIT V<br>Des de la Fracia a mandal actava da chará a Data atmatica da Casica Data Franca Danas Desis |         |
| <b>Pandas:</b> Environmental setup- Introduction to Data structures –Series- DataFrame –Panes- Basic  |         |
| Functionality- Function Application.                                                                  | 11      |
| Ipython: Running and editing Python Script - History Commands- System Commands- Command               |         |
| Line Options-Importing Python Shell code – Magic commands.                                            |         |
|                                                                                                       |         |
| Total Hours                                                                                           | 52      |
| * Italicized texts are for self study                                                                 |         |
| Power point Presentations, Group discussions, Seminar , Assignment                                    |         |
| Text Books                                                                                            |         |

- 1. E Balagurusamy, 2016, "Introduction to computing and problem solving using python", McGrawHill publication.
- 2. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython by Wes McKinny, O'Reilly Media, 2012. ISBN 978-1-4493-1979-3

#### **Reference Book**

- 1. Mark Lutz, 2013, "Learning Python", 5th Edition.
- 2. Welsey J. Chun, 2001, "Core Python Programming", Prentice Hall.

#### PSO **PSO1 PSO2 PSO3 PSO4 PSO5** CO **CO1** S Η М М М CO2 S Η Μ Η Η **CO3** Μ S Μ S L S Η Η **CO4** Η Μ S Η Η Η Μ **CO5**

#### MAPPING

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name: Dr. R. Deepa | Name: Dr.M. Sakthi  | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

M.Sc Computer Science

Effective from the year 2019 Onwards

| Programme code:     | M.Sc     | Programme Title : Master of Computer Sc |          | puter Science |
|---------------------|----------|-----------------------------------------|----------|---------------|
| <b>Course Code:</b> | 19PCS208 | Title                                   | Batch :  | 2019-2021     |
|                     |          | Information Security and                | Semester | II            |
| Hrs/Week:           | 4        | Cryptography                            | Credits: | 4             |

#### **Course Objective**

On successful completion of the course students will be able to understand the possible threats, vulnerabilities and attacks on computer systems and also to apply the necessary approaches and techniques to develop protection mechanism against them.

| K1 | CO1 | To remember the basics of information security and cryptography                     |
|----|-----|-------------------------------------------------------------------------------------|
| K2 | CO2 | To understand the possible attacks on browsers and various methods to protect them. |
| K3 | CO3 | To apply the security in operating system and cloud applications                    |
| K4 | CO4 | To analyze differential and linear cryptanalysis in symmetric cryptography          |
| K5 | CO5 | To evaluate various algorithms in public key cryptography                           |

| CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hours |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>UNIT I</b><br><b>Introduction:</b><br>Threats- vulnerabilities- controls- Confidentiality- integrity- availability- Attackers and attack types. Authentication- Identification Versus Authentication- Authentication Based on biometrics- Authentication Based on Tokens- Federated Identity management- Multifactor Authentication- Secure Authentication. Implementing Access Control- Procedure-Oriented Access Control- <i>Role Based Access Control.</i>                               | 10    |
| <b>UNIT II</b><br><b>Browser Attacks:</b><br>Browser Attack Types- How Browser Attacks Succeed: Failed Identification and<br>Authentication- Web Attacks Targeting Users False or Misleading Content- Malicious Web<br>Content- Protecting Against Malicious Web Pages- Foiling Data Attacks- Email Attacks-<br>Phishing-Protecting Against Email Attacks.                                                                                                                                     | 10    |
| UNIT III<br>Security in Operating System and Cloud:<br>Operating System Security: Security in Operating Systems- Security in the Design of<br>Operating Systems- Rootkit. Cloud Security: Cloud Computing Concepts- Service Models-<br>Deployment Models- Moving to the Cloud- Risk Analysis Cloud Provider Assessment-<br>Switching Cloud Providers- Cloud Security Tools and Techniques Data Protection in the<br>Cloud- Cloud Application Security- Cloud Identity Management.              | 10    |
| <b>UNIT IV</b><br><b>Symmetric Cryptography:</b><br>Divisibility and the Division Algorithm- Euclid"s algorithm Modular arithmetic -<br>Congruence and matrices - Groups, Rings, Fields- Finite fields- Symmetric Key Ciphers:<br>DES – Block cipher Principles of DES – Strength of DES – Differential and linear<br>cryptanalysis - Block cipher design principles – Block cipher mode of operation – Evaluation<br>criteria for AES – Advanced Encryption Standard - RC4 –Key distribution. | 10    |

50

#### UNIT V

#### Public Key Cryptography

Primes – *Primality Testing* –Factorization – Euler's totient function, Fermat's and Euler's Theorem - Chinese Remainder Theorem – Exponentiation and logarithm - Asymmetric Key Ciphers: RSA cryptosystem – Key distribution – Key management – Diffie Hellman key exchange - ElGamal cryptosystem – Elliptic curve arithmetic-Elliptic curve cryptography.

#### **Total Contact Hrs**

\**Italicized* texts are for self study

Power point Presentations, Seminar, Assignment

#### **Text Books**

- 1. Charles P. Pfleeger, Shari Lawrence Pfleeger, Jonathan Margulies, "Security in Computing", 2015, 5th Edition, Pearson Publications (Unit-I,II & III).
- 2. William Stalling, "Cryptography and Network Security Principles and Practice",2011, 5<sup>th</sup> Edition, Pearson Publications (Unit-IV & V)

#### **Reference Books**

- 1. Taylor Sutton Finch Alexander, Information Security Management Principles, 2012, 2nd edition BCS Learning and development Limited, United Kingdom.
- 2. Behrouz A Fououzan, "Cryptograhy & Network Security", 2007, Tata McGraw Hill.
- 3. Josef Pieprzyk, Thomas Hardjono and Jennifer Sebery, "Fundamentals of Computer Security", 2002, Springer.

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| CO1       | Н    | S    | М    | Н    | S    |
| CO2       | S    | М    | Н    | S    | L    |
| CO3       | Н    | Н    | S    | М    | М    |
| CO4       | М    | S    | Н    | Н    | Н    |
| CO5       | S    | М    | S    | Н    | L    |

| Course Designed by  | Verified by HOD     | Checked by             | Approved by               |
|---------------------|---------------------|------------------------|---------------------------|
| Name and Signature  | Name with Signature | CDC                    | COE                       |
| Name: N. Arul kumar | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:          | Signature:          | Signature:             | Signature:                |

10

10

| Programme code:     | M.Sc     | Programme Title :  | Master of Computer Science |           |
|---------------------|----------|--------------------|----------------------------|-----------|
| <b>Course Code:</b> | 19PCS209 | Title              | Batch :                    | 2019-2021 |
|                     |          | Big Data Analytics | Semester                   | II        |
| Hrs/Week:           | 4        |                    | Credits:                   | 4         |

#### **Course Objective**

On successful completion of this course students will possess the skills necessary for utilizing tools (including deploying them on Hadoop/MapReduce) to handle a variety of big data analytics, and able to apply R- tool for statistical analysis.

#### **Course Outcomes (CO)**

|    |     | Hadoop and MapReduce.                                                          |           |
|----|-----|--------------------------------------------------------------------------------|-----------|
| K5 | C05 | To build the novel architectures and platforms introduced for Big data, in par | ticular   |
|    |     | Programming has made modifications in Big Data.                                |           |
| K4 | CO4 | To analyze un-modeled, multi-structured data using Hadoop, MapReduce and       | d how R   |
| K3 | CO3 | To apply R programming for statistics and data analysis.                       |           |
|    |     | inadequate to analyze the big data                                             |           |
| K2 | CO2 | To understand the concept and challenge of big data and why existing tech      | nology is |
|    |     | data and data types of R.                                                      |           |
| K1 | CO1 | To remember how to collect, manage, store, query, and analyze various for      | ms of big |

| UNIT I                                                                                      |
|---------------------------------------------------------------------------------------------|
| Fundamentals of Big Data: Evolution of Data Management-Managing the data - Big Data         |
| – Big data management architecture.                                                         |
| Big Data Types: Structured data - Unstructured Data -Real Time and Non- real time           |
| requirements - Big Data together. Distributed Computing: History of Distributed             |
| Computing – Basics of Distributing Computing – Performance.                                 |
| UNIT II                                                                                     |
| Big Data Technology Components: Big Data Stack – Redundant Physical Infrastructure –        |
| Security Infrastructure - Operational Databases - Organizing Data Services and Tools -      |
| Analytical Data Warehouses – Big Data Analytics – Big Data Applications. Virtualization:    |
| Basics of Virtualization - Managing virtualization with Hypervisor - Abstraction and        |
| Virtualization – Implementing Virtualization.                                               |
| <b>Cloud and Big Data:</b> Cloud in the context of Big Data – Cloud Deployment and Delivery |

**Cloud and Big Data:** Cloud in the context of Big Data – Cloud Deployment and Delivery models – Cloud as an imperative for big data – Use of cloud for Big data – Providers in the Big Data Cloud Market.

#### UNIT III

**Operational Database:** Relational, Non-relational, Key-value Pair, Document, Columnar, Graph, Spatial, Polygot Persistence.

Map Reduce Fundamentals: Origin of Map Reduce- Map Function – Reduce Function –Image: Putting Map and Reduce together – Optimizing Map-Reduce Tasks.Image: Putting Map and Reduce Tasks.Image: Putting Map-Reduce Tasks.Image: Putting

| Leosystem                                                                                          |     |  |  |  |
|----------------------------------------------------------------------------------------------------|-----|--|--|--|
| UNIT IV                                                                                            |     |  |  |  |
| <b>Introducing R</b> : The Big Picture – Exploring R – The Fundamentals of R – Work with R -       | 10  |  |  |  |
| Getting Started with Arithmetic – Getting Started with Reading and Writing – Working with          | 10  |  |  |  |
| Dimensions.                                                                                        |     |  |  |  |
| UNIT V                                                                                             |     |  |  |  |
| <b>Coding in R</b> – Putting fun in functions – Controlling the logic flow – Debugging Your        | 10  |  |  |  |
| Code – Getting Data into and out of R – Manipulating and Processing Data – Working                 |     |  |  |  |
| with Graphics – Using Base Graphics.                                                               | = 0 |  |  |  |
| Total Hours                                                                                        | 50  |  |  |  |
| *Italicized texts are for self study                                                               |     |  |  |  |
| Power point Presentations, Seminar , Assignment                                                    |     |  |  |  |
| Text Book                                                                                          |     |  |  |  |
| 1. Judith Hurwitz, Alan Nurgent, Dr. Fern Halper, Marcia Kaufman, 2013, "Big Data for              |     |  |  |  |
| Dummies", 1 <sup>st</sup> Edition, A Wiley Publication.                                            |     |  |  |  |
| 2. Andrie De Vries, Joris Meys, 2015, "R for Dummies", 2 <sup>nd</sup> Edition, John Wiley & Sons. |     |  |  |  |
| Reference Books                                                                                    |     |  |  |  |
| 1. Michael Minelli, Michele Chambers, Ambiga Dhiraj, 2013, "Big Data, Big Analytics –              |     |  |  |  |
| Emerging Business Intelligence and Analytic Trends For Today's Businesses", First Edition          |     |  |  |  |
| A Wiley Publication.                                                                               |     |  |  |  |
| 2. Strata Conference, Making Data Work, 2013, "Big Data Now", First Edition, Shroff                |     |  |  |  |
| Publication.                                                                                       |     |  |  |  |
| 3. Kun Ren, 2016, "Learning R Programming", First Edition, Packt Publication.                      |     |  |  |  |

#### MAPPING

| PS0<br>C0 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | М    | М    | Н    | Н    | S    |
| CO2       | М    | Н    | Н    | М    | S    |
| CO3       | Н    | М    | Н    | Н    | М    |
| CO4       | М    | Н    | Н    | М    | Н    |
| CO5       | L    | М    | Н    | Н    | S    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name:M.Dhavapriya  | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

Effective from the year 2019 Onwards

M.Sc Computer Science

| Programme code:       | M.Sc | Programme Title :          | Master of Computer Science |           |
|-----------------------|------|----------------------------|----------------------------|-----------|
| Course Code: 19PCS210 |      | Title                      | Batch :                    | 2019-2021 |
|                       |      | Programming Lab-III : Data | Semester                   | Π         |
| Hrs/Week:             | 4    | Anaryues                   | Credits:                   | 4         |

#### **Course Objective**

On successful completion of the course the students should write well-documented programs in the Python language, including use of the logical constructs of that language.

| К3 | C01 | To implement, Interpret, Contrast of various operators.                                                         |  |  |  |  |  |
|----|-----|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| K4 | CO2 | To review and analyze database with variables, loop, branch, subroutine, and input/output                       |  |  |  |  |  |
| K5 | CO3 | To validate how databases are integrated with components ,modular programming and the design of user interfaces |  |  |  |  |  |

- 1. Write a program that displays the following information: Your name, Full address, Mobile number, College name, Course subjects.
- 2. Write a program to find the largest three integers using if-else and conditional operator.
- 3. Write a program that asks the user to enter a series of positive numbers (The user should enter a negative number to signal the end of the series) and the program should display the numbers in order and their sum.
- 4. Write a program to find the product of two matrices [A]mxp and [B]pxr
- 5. Write recursive and non-recursive functions for the following:
  - a. To find GCD of two integers.
  - b. To find the factorial of positive integer
  - c. To print Fibonacci Sequence up to given number n
- 6. Write a program to display two random numbers that are to be added, such as: 247 + 129, the program should allow the student to enter the answer. If the answer is correct, a message of congratulations should be displayed. If the answer is incorrect, a message showing the correct answer should be displayed.
- 7. Write recursive and non-recursive functions to display prime number from 2 to n.
- 8. Write a program that writes a series of random numbers to a file from 1 to n and display.
- 9. Write a program to create file, write the content and display the contents of the file with each line preceded with a line number (start with 1) followed by a colon.
- 10. In a program, write a function that accepts two arguments: a list and a number n. The function displays all of the numbers in the list that are greater than the number n.

- 11. Write a program with a function that accepts a string as an argument and returns the no. of vowels that the string contains. Another function to return number of consonants.
- 12. Write a program that opens a specified text file and then displays a list of all the unique words found in the file. (Store each word as an element of a set.)
- 13. Write a program to analyze the contents of two text files using set operations.
- 14. Write a program to implement the inheritance and dynamic polymorphism.
- 15. Write a GUI program that converts Celsius temperatures to Fahrenheit temperatures.
- 16. Write a GUI program that displays your details when a button is clicked.
- 17. Write a python program to do stack operations using numpy.
- 18. Write a python program to transpose a matrix.
- 19. Write a python program for slicing a matrix.
- 20. Merge two datasets using pandas
- 21. Write a pandas program to cluster data in python.

Power point Presentations, Experience Discussion, Brain storming

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | Н    | S    | М    | Н    | S    |
| CO2       | Н    | М    | М    | S    | Н    |
| CO3       | М    | S    | Н    | М    | М    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by              |  |
|--------------------|---------------------|------------------------|--------------------------|--|
| Name and Signature | Name with Signature | CDC                    | COE                      |  |
| Name:Dr. R. Deepa  | Name: Dr.M. Sakthi  | Name: Dr. M. Durairaju | Name: Dr. R.Muthukumaran |  |
| Signature:         | Signature:          | Signature:             | Signature:               |  |

Effective from the year 2019 Onwards

M.Sc Computer Science

| -JJ J J J J     |          |                           |                            |           |  |
|-----------------|----------|---------------------------|----------------------------|-----------|--|
| Programme code: | M.Sc     | <b>Programme Title :</b>  | Master of Computer Science |           |  |
| Course Code:    | 19PCS211 | Title                     | Batch :                    | 2019-2021 |  |
|                 |          | Programming Lab-IV: Scala | Semester                   | П         |  |
| Hrs/Week:       | 4        | Programming               | Credits:                   | 4         |  |

#### **Course Objective**

On successful completion of the course the students should understand the concepts of Client/Server, TCP, and UDP.

#### **Course Outcomes (CO)**

| К3 | C01 | To implement mathematical operations using Scala.                                          |
|----|-----|--------------------------------------------------------------------------------------------|
| K4 | CO2 | To review and analyze database with variables, loop, branch, subroutine, and input/output  |
| K5 | CO3 | To validate how databases are manipulated with components ,modular programming using Scala |

- 1. Write a Scala program to print your name.
- 2. Write a Scala program to find largest number among two numbers.
- 3. Write a Scala program to find a number is negative or positive.
- 4. Write a Scala program to declare string variable and print the string.
- 5. Write a Scala program to demonstrate example of multiple variables declarations and assignments.
- 6. Write a Scala program to print numbers from 1 to 100 using for loop.
- 7. Write a Scala program to print numbers from 1 to 100 using for loop with until to determine loop range.
- 8. Write a Scala program to demonstrate example of collection list and for loop.
- 9. Write a Scala program to create a user define function to return largest number among two numbers.
- 10. Write a Scala program of array Declare, print and calculate sum of all elements.
- 11. Write a Scala Program for Finding subarray with given sum
- 12. Write a Scala Program to find the Toppers of Class
- 13. Write a Scala Program to find Shortest Source to Destination Path
- 14. Write a Scala Program to Print Boundary Sum of a Binary Tree

Power point Presentations, Assignment, Experience Discussion, Brain storming

### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | S    | S    | М    | Н    | Н    |
| CO2       | Н    | М    | Н    | S    | Н    |
| CO3       | М    | S    | Н    | М    | М    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name:Dr.R.Deepa    | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

| Programme code: | M.Sc     | Programme Title :         | Master of Com | puter Science |
|-----------------|----------|---------------------------|---------------|---------------|
| Course Code:    | 19PCS212 | Title                     | Batch :       | 2019-2021     |
|                 |          | Programming Lab-V:        | Semester      | II            |
| Hrs/Week:       | 3        | Unified Modeling Language | Credits:      | 4             |
|                 |          | and R- Tool               |               |               |

#### **Course Objective**

On successful completion of the course the students should understand the concepts of UML Diagrams for various applications and R Programming for statistical data analysis.

#### **Course Outcomes (CO)**

| К3 | C01 | To implement potential benefits of object-oriented programming over other    |
|----|-----|------------------------------------------------------------------------------|
|    |     | approaches                                                                   |
| K4 | CO2 | To interpret object-oriented approach for developing applications of varying |
|    |     | complexities                                                                 |
| K5 | CO3 | To verify how a system interacts with its environment using R-Tool           |

#### Create a UML diagrams for the following applications.

- 1. Single sign-on to Google Application
- 2. ATM Processing System
- 3. Quiz system
- 4. Student information system
- 5. Tourism and travel management system
- 6. Online shopping Domain
- 7. Construction management system
- 8. Library domain model
- 9. Inventory management system

# Note: The applications are developed using Class, Object, Use case, Sequence, Activity, Collaboration, Deployment, Component diagrams.

#### R Tool

- 1. Calculate Mean, Standard Deviation and Histogram by reading data from a file.
- 2. Simple Vector and Matrix calculations using R.
- 3. Create functions with Looping using R.
- 4. Create a simple data frame from 3 vectors. Order the entire data frame by the first column.
- 5. Draw a scatterplots for a dataset using R.

#### MAPPING

| PS0<br>C0 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | Н    | S    | S    | Н    | S    |
| CO2       | Н    | М    | Н    | S    | Н    |
| CO3       | S    | L    | М    | М    | М    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name:M.Dhavapriya  | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

## ELECTIVE – I

Effective from the year 2019 Onwards

M.Sc Computer Science

| I               |          | JJ J                     | · · · · · · · · · · · · · · · · · · · |               |
|-----------------|----------|--------------------------|---------------------------------------|---------------|
| Programme code: | M.Sc     | <b>Programme Title :</b> | Master of Com                         | puter Science |
| Course Code:    | 19PCS2E1 | Title                    | Batch :                               | 2019-2021     |
|                 |          | ELECTIVE- I:             | Semester                              | II            |
| Hrs/Week:       | 5        | Computing Technologies   | Credits:                              | 5             |

#### **Course Objective**

On successful completion of the course the students should understand the concepts of cloud computing, developing cloud services, Centralizing Email communications, cloud computing services and grid computing.

| K1 | C01 | To understand the architecture and concept of different Cloud models-            |
|----|-----|----------------------------------------------------------------------------------|
|    |     | SaaS,PaaS,Web Services and On-Demand Computing                                   |
| K2 | CO2 | To provide a strong fundamental concepts in the underlying principle of cloud    |
|    |     | virtualization, cloud storage, data management and data visualization            |
| КЗ | CO3 | To implement various applications by utilizing cloud platforms such as Google    |
|    |     | AppEngine and Amazan's web services(AWS)                                         |
| K4 | CO4 | To analyze various Grid computing technologies such as OGSA and OGSI             |
| K5 | CO5 | To Create application by utilizing cloud platforms such as Google app Engine and |
|    |     | Amazon Web Services                                                              |

| CONTENTS                                                                                               | Hours |
|--------------------------------------------------------------------------------------------------------|-------|
| UNIT I                                                                                                 | 13    |
| Fundamentals of grid and cloud computing: Introduction to Grid computing- Merging the Grid             |       |
| Services Architecture with the Web Services Architecture. Introduction to Cloud computing - History of |       |
| Cloud Computing -How Cloud Computing works-Companies in the Cloud Computing Today                      |       |
| UNIT II                                                                                                | 13    |
| Developing cloud services: Computing in the Cloud - The Pros and Cons of Cloud Computing-Benefits      |       |
| of Cloud Computing. Developing Cloud Services: Web Based Application - Pros and Cons of Cloud          |       |
| Service Development - Types of Cloud Service Development - Software as a Service - Platform as a       |       |
| Service - Web Services - On-Demand computing - Discovering Cloud Services Development Services         |       |
| and Tools – Amazon Ec2- Google App Engine – IBM Clouds.                                                |       |
| UNIT III                                                                                               | 13    |
| Cloud computing for everyone: Centralizing Email communications – collaborating on Schedules –         |       |
| Collaborating on To-Do Lists - Collaborating Contact Lists - Cloud computing for the Community -       |       |
| Collaborating on Group Projects and Events - Cloud Computing for the Corporation                       |       |
| UNIT IV                                                                                                | 13    |
| Using cloud services: Collaborating on Calendars, Schedules and Task Management – Exploring Online     |       |
| Scheduling Applications - Exploring Online Planning and Task Management - Collaborating on Event       |       |
| Management - Collaborating on Contact Management - Collaborating on Project Management -               |       |
| Collaborating on Databases - Storing and Sharing Files - Evaluating Web Mail Services - Evaluating     |       |
| Web Conference Tools - Collaborating via Social Networks and Groupware - Collaborating via Blogs       |       |
| and Wikis                                                                                              |       |

#### UNIT V

**Grid computing:** Open Grid Services Architecture (OGSA) – Sample Use Cases that drive the OGSA – The OGSA Platform Components – Open Grid Services Infrastructure (OGSI) – OGSA Basic Services

#### **Total Hours**

65

13

#### \*Italicized texts are for self study

Power point Presentations, Group discussions, Seminar ,Quiz, Assignment, Experience Discussion, Brain storming, Activity

#### **Text Books**

- 1. Joshy Joseph & Criag Fellenstein, 2009, "Grid Computing", PHI, PTR.
- 2. Michael Miller, August 2009, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing.

#### **Reference Books**

1. Jose C. Cunha, Omer F. Rana (Eds), 2006, "Grid Computing", Springer International Edition.

2. Anthony T. Velte and others, 2011, "Cloud Computing" TATA Mc-Graw Hill Publications, New Delhi.

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | S    | S    | М    | S    | S    |
| CO2       | Н    | М    | Н    | S    | Н    |
| CO3       | М    | Н    | S    | М    | М    |
| CO4       | М    | Н    | Н    | М    | Н    |
| CO5       | Н    | М    | L    | Н    | М    |

| Course Designed by   | Verified by HOD     | Checked by             | Approved by               |
|----------------------|---------------------|------------------------|---------------------------|
| Name and Signature   | Name with Signature | CDC                    | COE                       |
| Name: Dr.A.Kanagaraj | Name: Dr.M. Sakthi  | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:           | Signature:          | Signature:             | Signature:                |

| Programme code: | M.Sc     | Programme Title :         | Master of Com | puter Science |
|-----------------|----------|---------------------------|---------------|---------------|
| Course Code:    | 19PCS3E2 | Title                     | Batch :       | 2019-2021     |
|                 |          | <b>ELECTIVE</b> – I: Soft | Semester      | II            |
| Hrs/Week:       | 5        | Computing                 | Credits:      | 5             |

#### **Course Objective**

On successful completion of the course the students should understand the concepts of Neural Networks, architecture, functions and various algorithms involved and also know the fundaments of fuzzy logic, various fuzzy systems and their functions.

| K1 | CO1 | To remember soft computing techniques and their applications.                 |
|----|-----|-------------------------------------------------------------------------------|
| К2 | CO2 | To understand perceptrons and counter propagation networks and fuzzy systems. |
| К3 | CO3 | To apply soft computing techniques to solve real life problems.               |
| K4 | CO4 | To analyze various neural network architectures.                              |
| K5 | CO5 | To evaluate Fuzzy Logic, Various fuzzy systems and their functions.           |

| CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                            | Hours |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| UNIT I<br>Fundamentals of Neural Networks: Basic concepts of Neural Networks –Human Brain –<br>Model of an Artificial Neuron – Neural Network Architectures – Characteristics of Neural<br>Networks – Learning methods - Easy Neural Network Architectures – Some Application<br>domains.                                                                                                                           | 13    |
| <b>UNIT II</b><br>Back propagation Networks: <i>Architecture of a Back-Propagation Network</i> – Back propagation Learning- Effect of Tuning parameters of the Back Propagation Neural Network – Selection of various parameters in BPN.                                                                                                                                                                            | 13    |
| <b>UNIT III</b><br>Adaptive Resonance Theory: Introduction: Cluster Structure, Vector Quantization, Classical<br>ART Networks, Simplified ART Architecture. ART1: Architecture of ART1–Special<br>features of ART1 Models-ART1 Algorithms. ART2: Architecture of ART2– ART2<br>Algorithms.                                                                                                                          | 13    |
| <b>UNIT IV</b><br>Fuzzy Set Theory: Fuzzy versus crisp, Crisp sets: Operation on Crisp sets- Properties of<br>Crisp Sets-Partition and Covering. Fuzzy sets: Membership Function – Basic fuzzy set<br>Operations-properties of fuzzy sets. Crisp relations: <i>Cartesian product</i> -Other Crisp<br>Relations-Operations on Relations. Fuzzy relations: Fuzzy Cartesian product- Operations on<br>Fuzzy Relations. | 13    |
| <b>UNIT V</b><br>Fuzzy Systems: Crisp logic: Laws of Propositional Logic-Inference in propositional Logic.                                                                                                                                                                                                                                                                                                          | 13    |

| Predicate logic: Interpretations of Predicate Logic Formula – Inference in Predicate Logic. |    |
|---------------------------------------------------------------------------------------------|----|
| Fuzzy logic: Fuzzy Quantifiers - Fuzzy Inference, Fuzzy rule based system -                 |    |
| Defuzzification.                                                                            |    |
| Total Hours                                                                                 | 65 |
| *Italicized texts are for self study                                                        |    |
| Power point Presentations, Seminar, Assignment, Experience Discussion, Brain stormin        | ıg |
|                                                                                             |    |

#### **Text Books**

1. S.Rajasekaran, G.A.VijayalakshmiPai, "Neural Networks, Fuzzy logic, and Genetic Algorithms Synthesis and Applications, PHI, 2005.

#### **Reference Books**

- 1. James A. Freeman, David M. Skapura, "Neural Networks-Algorithms, Applications, and Programming Techniques", Pearson Education.
- 2. Fredric M. Ham, IvicaKostanic, "Principles of Neuro computing for science of Engineering", TMCH.

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | Н    | S    | М    | Н    | S    |
| CO2       | Н    | М    | Н    | S    | Н    |
| CO3       | L    | S    | S    | S    | М    |
| CO4       | М    | Н    | Н    | М    | Н    |
| CO5       | М    | Н    | Н    | М    | М    |

#### MAPPING

| Course Designed by             | Verified by HOD     | Checked by             | Approved by               |
|--------------------------------|---------------------|------------------------|---------------------------|
| Name and Signature             | Name with Signature | CDC                    | COE                       |
| Name: K.Kannika<br>Parameswari | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:                     | Signature:          | Signature:             | Signature:                |

Effective from the year 2019 Onwards

M.Sc Computer Science

| Programme code: | M.Sc     | <b>Programme Title :</b>    | Master of Computer Science |           |
|-----------------|----------|-----------------------------|----------------------------|-----------|
| Course Code:    | 19PCS3E3 | Title                       | Batch :                    | 2019-2021 |
|                 |          | <b>ELECTIVE</b> – I: Mobile | Semester                   | II        |
| Hrs/Week:       | 5        | Computing                   | Credits:                   | 5         |

#### **Course Objective**

On successful completion of the course the students should understand Mobile Computing Architecture and Emerging Technologies and understand about fundamentals of GSM and CDMA Technologies.

| K1 | C01 | To remember the features and challenges of mobile devices, native app development |
|----|-----|-----------------------------------------------------------------------------------|
|    |     | frameworks, hybrid app development frameworks                                     |
| K2 | CO2 | To understand and select appropriate framework for developing applications based  |
|    |     | on the problem requirements                                                       |
| K3 | CO3 | Apply the UI components, multimedia usage, location based services, data storage  |
|    |     | mechanisms for the given problem                                                  |
| K4 | CO4 | Design an application based on the user requirements                              |
| K5 | CO5 | Be able to apply problem solving approaches to work challenges and make decisions |
|    |     | using sound engineering methodologies                                             |

| CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hours |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>UNIT I</b><br><i>Introduction</i> : Mobility of Bits and Bytes – Wireless-the beginning – Mobile computing – Dialog control – Networks – Middle ware and gateways – Application and Services– Developing Mobile computing applications – Security in Mobile computing – Standards –Why is it necessary? – Standard bodies – Players in the wireless space. <b>Mobile Computing Architecture:</b> History of computers – History of internet– Internet-the Ubiquitous Network – Architecture for mobile computing – Three-Tire architecture – Design considerations for mobile computing – Mobile computing through Internet– Making Existing applications Mobile-enabled. | 13    |
| UNIT II<br>Mobile Computing Through Telephony: Evolution of telephony – Multiple access procedures –<br>Mobile computing through telephone – Developing an IVR application –Voice XML – Telephony<br>applications programming interface(TAPI).<br>Emerging Technologies: Introduction – Bluetooth – Radio Frequency Identifications (RFID) –<br>Wireless Broadband (WiMAX) – Mobile IP – Internet Protocol Version 6 (IPv6) – Java card.                                                                                                                                                                                                                                     | 13    |
| <b>UNIT III</b><br>Global System For Mobile Communication (GSM): GSM Architecture –GSM Entities – Call<br>routing in GSM – PLMN Interfaces – GSM Address and Identifiers –Network aspects in GSM –<br>GSM frequency allocation – Authentications and Security. Short Message Services (Sms): Mobile<br>computing over SMS – Short Message Services (SMS) – Value added services through SMS –<br>Accessing SMS bearer.                                                                                                                                                                                                                                                       | 13    |
| UNIT IV<br>General Packet Radio Service (GPRS): GPRS and Packet data network –GPRS Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13    |

| M.Sc Computer Science Effective from the yea                                               | r 2019 Onwards |
|--------------------------------------------------------------------------------------------|----------------|
| architecture – GPRS Network operations – Data services in GPRS – Applications for GPRS –   |                |
| Limitations of GPRS – Billing and charging in GPRS.                                        |                |
|                                                                                            |                |
| Wireless Application Protocol (WAP): WAP – MMS – GPRS applications.                        |                |
| UNIT V                                                                                     |                |
| CDMA and 3G: Spread Spectrum technology – Is-95 – CDMA Vs GSM – Wireless data– 3rd         |                |
| Generation networks – Applications on 3G.                                                  |                |
| Wireless LAN: Advantages – IEEE 802.11 Standards – Wireless LAN architecture – Mobility in | 13             |
| Wireless LAN – Deploying Wireless LAN – Mobile ADHOC networks and Sensor networks –        |                |
| Wireless LAN Security – Wi-Fi Vs 3G.                                                       |                |
|                                                                                            |                |
| Total Hours                                                                                | 65             |
| *Italicized texts are for self study                                                       |                |
|                                                                                            |                |
| Power point Presentations, Seminar, Assignment, Experience Discussion, Brain storming      |                |
| Text Books                                                                                 |                |
| 1. Ashoke K Talukder, Roopa R Yavagal, "Mobile Computing", Tata McGraw-Hill, 2005, Fo      | ourth Reprint  |
| 2007.                                                                                      |                |
| Reference Books                                                                            |                |
| 1 Jochen H Schller "Mobile Communications" Second Edition Pearson Education New            | Delhi 2007     |

 Jochen H. Schller, "Mobile Communications", Second Edition, Pearson Education, New Delhi, 2007.
 Dharma Prakash Agarval, Qing and An Zeng, "Introduction to Wireless and Mobile systems", Thomson Asia Pvt Ltd, 2005.

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | Н    | S    | М    | Н    | S    |
| CO2       | Н    | М    | Н    | S    | Н    |
| CO3       | L    | S    | S    | S    | М    |
| CO4       | М    | Н    | Н    | М    | Н    |
| CO5       | Н    | М    | L    | Н    | М    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name: N.Yasodha    | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

| Programme code:     | M.Sc     | Programme Title :Master of Computer Science |          | puter Science |
|---------------------|----------|---------------------------------------------|----------|---------------|
| <b>Course Code:</b> | 19PCS2N1 | Title                                       | Batch :  | 2019-2021     |
|                     |          | Non-Major Elective I:                       | Semester | II            |
| Hrs/Week:           | 1        | Multimedia Packages Lab                     | Credits: | 2             |

#### **Course Objective**

On successful completion of the course the students should understand the concepts of Photoshop, Flash and Macromedia Director.

#### КЗ C01 To implement the concepts of Image segmentation and video segmentation K4 CO2 To analyze the concepts of Storage models and Access Techniques of Multimedia devices К5 CO3 To access Text, Audio Text and Audio tools PHOTOSHOP FLASH • Use of basic tools • Motion Tween • Merging two images • Text Bouncing • Cloning an image • Text Animate • Changing color of an image • Image fading • Give Light effect to the image • Butterfly Animation • Bouncing Ball • Icy Image **MACROMEDIA DIRECTOR** • Paint and Rainbow effect • Design a flex for college using • Basic Animation Photoshop • Slide Interaction • Rain effect • Bubbled effect

#### **Course Outcomes (CO)**

\*Italicized texts are for self study

Power point Presentations , Brain storming, Activity

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | Н    | S    | М    | Н    | S    |
| CO2       | Н    | М    | Н    | Н    | Н    |
| CO3       | М    | S    | S    | М    | М    |

| Course Designed by  | Verified by HOD     | Checked by             | Approved by               |
|---------------------|---------------------|------------------------|---------------------------|
| Name and Signature  | Name with Signature | CDC                    | COE                       |
| Name: R.Nandhakumar | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:          | Signature:          | Signature:             | Signature:                |

| Programme code:     | M.Sc     | Programme Title :         | Master of Computer Science |           |
|---------------------|----------|---------------------------|----------------------------|-----------|
| <b>Course Code:</b> | 19PCS2N2 | Title                     | Batch :                    | 2019-2021 |
|                     |          | Non-Major Elective I: Web | Semester                   | II        |
| Hrs/Week:           | 1        | Designing Lab             | Credits:                   | 2         |

#### **Course Objective**

The objective of this course is to enable the students to develop and design various applications using Web Technology.

#### **Course Outcomes (CO)**

| K3 | CO1 | To apply critical thinking skills to design and create websites                                                                            |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| K4 | CO2 | To analyze and write a well formed / valid XML document                                                                                    |
| K5 | CO3 | To access and analyze website performance by interpreting analytics to measure site traffic, SEO, engagement, and activity on social media |

| HTML Tags          | Address Book              |
|--------------------|---------------------------|
| • Tables           | DTD for Book Information  |
| • Forms            | Resume Creation using DTD |
| • Frames           | XSL Transformation        |
| Web Creation       | XSL Sorting               |
| CSS Rules          | Event Handling            |
| CSS Grouping Style | • Filters                 |
| • XML using CSS    |                           |
|                    |                           |

#### *\*Italicized* texts are for self study

Power point Presentations, Experience Discussion, Brain storming, Activity

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | S    | S    | М    | Н    | S    |
| CO2       | Н    | М    | S    | L    | Н    |
| CO3       | S    | S    | S    | М    | М    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by              |
|--------------------|---------------------|------------------------|--------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                      |
| Name:N.Arulkumar   | Name: Dr.M. Sakthi  | Name: Dr. M. Durairaju | Name: Dr. R.Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:               |

# **SEMESTER III**

M.Sc Computer Science

Effective from the year 2019 Onwards

| Programme code: | M.Sc     | Programme Title : | Master of Computer Science |           |
|-----------------|----------|-------------------|----------------------------|-----------|
| Course Code:    | 19PCS313 | Title             | Batch :                    | 2019-2021 |
|                 |          | Angular JS        | Semester                   | III       |
| Hrs/Week:       | 4        |                   | Credits:                   | 4         |

#### **Course Objective**

On successful completion of this course, students will be able to create dynamic web applications that depend on the Model-View-Controller architecture, and also to minimize the dependence on JavaScript requirement for functionalizing the web applications.

| K1 | C01 | To recollect the fundamental concepts of javascript                       |
|----|-----|---------------------------------------------------------------------------|
| K2 | CO2 | To get the idea about AngularJS framework and Model View Controller(MVC)  |
| K3 | CO3 | To deploy the programs using filters, modules, controllers and directives |
| K4 | CO4 | To review the various services and server communications                  |
| K5 | CO5 | To validate the forms by using model binding                              |

| CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hours |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>UNIT I</b><br>JavaScript: Introduction- Including Scripts on a Page- Statements- Functions- Parameters and<br>Return Values- Types and Variables- <i>Primitive Types</i> - JavaScript Operators- Equality vs. Identity-<br>Pre- vs. Post-Increment- Working with Objects: Creating Objects- Reading and Modifying an<br>Object's Properties- Adding Methods to Objects- Enumerating Properties- Control Flow- Working<br>with Arrays- Callbacks- JSON.                                                                                         | 10    |
| <b>UNIT II</b><br><b>AngularJS:</b> Basics of AngularJS-Framework- Downloading and Installing AngularJS- Browser<br>Support- First AngularJS Application- Declarative vs. Procedural Programming- Directives and<br>Expressions- <b>Introduction to MVC:</b> Design Patterns- Model View Controller- Why MVC- MVC<br>the AngularJS Way- <b>Filters and Modules:</b> Introduction to Filters- Built-in Filters- The Number<br>Filter- The Date Filter- The limitTo Filter- AngularJS Modules- Bootstrapping AngularJS- Creating a<br>Custom Filter | 10    |
| UNIT III<br>Controllers : Defining Controllers- Creating and Applying Controllers – Scopes: Setting up the<br>scope- Modifying the Scope-Directives: Basics of Directives- Using Directives- Built-in Directives-<br>Event-Handling Directives- Creating a Custom Directive- Working with Forms: <i>HTML Forms</i><br><i>Overview</i> - Model Binding- AngularJS Forms- Validating Forms                                                                                                                                                          | 10    |
| <b>UNIT IV</b><br>Services and Server Communication: Using Services- The \$window Service- The \$location<br>Service- The \$document Service- Creating Services- Server Communication- Handling Returned<br>Data- Organizing Views: Installing the ngRoute Module- Using URL Routes- Defining Routes-<br>Route Parameters- Eager vs. Conservative Routes- Route Configuration Options- HTML5 Mode.                                                                                                                                                | 10    |
| <b>UNIT V</b><br><b>AngularJS Animation:</b> Installing the ngAnimate Module- CSS Animation Overview- Applying                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10    |

50

| Animations- | Deployment     | <b>Considerations:</b> | Configuration-    | Testing-   | Error   | Handling-  | Hide |
|-------------|----------------|------------------------|-------------------|------------|---------|------------|------|
| Unprocessed | Templates- Min | nification and Bund    | lling- Managing t | he Build P | rocess- | Deployment | •    |

#### **Total Hours**

\*Italicized texts are for self study

Power point Presentations, Seminar, Assignment, Brain storming

#### **Text Books**

1. Andrew Grant, "Beginning AngularJS", 1st Edition, Apress, 2014

2. Adam Freeman, "Pro AngularJS", 1st Edition, Apress, 2014

#### **Reference Books**

1.Brad Green and Shyam Seshadri, "AngularJS – Up and Running", 2<sup>nd</sup> Edition, O' Reilly,2014

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | S    | Н    | Н    | Н    | S    |
| CO2       | Н    | Н    | М    | S    | М    |
| CO3       | М    | S    | Н    | Н    | Н    |
| CO4       | S    | М    | S    | Н    | М    |
| CO5       | Н    | S    | М    | М    | Н    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name:N.ArulKumar   | Name: Dr.M. Sakthi  | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

M.Sc Computer Science

Effective from the year 2019 Onwards

| Programme code: | M.Sc     | Programme Title :        | Master of Computer Science |           |
|-----------------|----------|--------------------------|----------------------------|-----------|
| Course Code:    | 19PCS314 | Title                    | Batch :                    | 2019-2021 |
|                 |          | Digital Image Processing | Semester                   | III       |
| Hrs/Week:       | 5        |                          | Credits:                   | 4         |

### **Course Objective**

On successful completion of the course the students should understand the features of Java and the Web services. **Course Outcomes (CO)** 

| -           |
|-------------|
|             |
| pling, and  |
|             |
| histogram   |
|             |
| restoration |
|             |
|             |
|             |

| CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hours |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>UNIT I</b><br><b>Introduction:</b> What is Digital image processing – the origin of DIP – Examples of fields that<br>use DIP – Fundamentals steps in DIP – Components of an image processing system. <b>Digital</b><br><b>Image Fundamentals:</b> <i>Elements of Visual perception</i> – Light and the electromagnetic<br>spectrum – Image sensing and acquisition – Image sampling and Quantization– Some Basic<br>relationship between Pixels – Linear & Nonlinear operations.        | 13    |
| <b>UNIT II</b><br><b>Image Enhancement in the spatial domain:</b> Background – <i>some basic Gray level</i><br><i>Transformations</i> – Histogram Processing – Enhancement using Arithmetic / Logic<br>operations –Basics of spatial filtering – Smoothing spatial filters – Sharpening spatial filters<br>– combining spatial enhancement methods.                                                                                                                                        | 13    |
| <b>UNIT III</b><br><b>Image Restoration:</b> A model of the Image Degradation / Restoration Process – Noise<br>models – Restoration is the process of noise only – Spatial Filtering – Periodic Noise<br>reduction by frequency domain filtering –Modeling the Degradation function –Direct<br>Inverse Filtering-Wiener Filtering-Constrained Least Squares (Regularized) Filtering –<br>Iterative Nonlinear Restoration using the Lucy-Richardson Algorithm- <i>Blind Deconvolution</i> . | 13    |
| <b>UNIT IV</b><br><b>Image Compression:</b> Fundamentals – Image compression models – Elements of<br>Information Theory – Error Free Compression – Variable Length Coding – Bit-Plane<br>Coding – Lossless Predictive Coding – Lossy Compression – Lossy Predictive Coding –<br><i>Image compression standards</i>                                                                                                                                                                         | 13    |
| UNIT V<br>Image Segmentation: Point, Line and Edge Detection–Line Detection Using the Hough                                                                                                                                                                                                                                                                                                                                                                                                | 13    |

65

Transform– *Thresholding* – Region-Based segmentation – Segmentation by Morphological watershed Transform.

#### **Total Hours**

*\*Italicized* texts are for self study

Power point Presentations, Seminar , Assignment

#### **Text Books**

- 1. Rafael C. Gonzalez, Richard E. Woods, 2009, "Digital Image Processing", 3<sup>rd</sup> Edition, PHI/Pearson Education(Unit 1,Unit 2,Unit 4)
- 2. Rafael C. Gonzalez, Richard E.Woods, Steven L.Eddins, 2005, "Digital Image Processing Using MATLAB", 2<sup>nd</sup> Edition, Tata McGraw-Hill International Editions(Unit 3,Unit 5)

#### **Reference Books**

- 1. Nick Efford, 2004, "Digital Image Processing a practical introducing using Java", Pearson Education
- 2. Chanda.B, Dutta Majumder.D, 2003, "Digital Image Processing and Analysis", PHI

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | М    | S    | М    | Н    | S    |
| CO2       | Н    | Н    | Н    | S    | М    |
| CO3       | М    | S    | S    | М    | М    |
| CO4       | S    | Н    | Н    | S    | Н    |
| CO5       | М    | Н    | S    | Н    | М    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name: P. Jayapriya | Name: Dr.M. Sakthi  | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

Effective from the year 2019 Onwards

| M.Sc | Computer | Science |
|------|----------|---------|
|------|----------|---------|

| Programme code:     | M.Sc     | Programme Title :  | Master of Computer Science |           |
|---------------------|----------|--------------------|----------------------------|-----------|
| <b>Course Code:</b> | 19PCS315 | Title              | Batch :                    | 2019-2021 |
|                     |          | Internet of Things | Semester                   | III       |
| Hrs/Week:           | 5        |                    | Credits:                   | 4         |

#### **Course Objective**

On successful completion of students will understand the fundamentals of Internet of Things, IoT Protocols, built a small low cost embedded system using Raspberry Pi and to apply the concept of Internet of Things in the real world scenario

| K1 | CO1 | To remember web services to access/control IoT devices                       |
|----|-----|------------------------------------------------------------------------------|
| K2 | CO2 | To understand the portable IoT using Raspberry Pi                            |
| K3 | CO3 | To deploy use of IoT application and connect to the cloud                    |
| K4 | CO4 | To analyze various protocols for IoT                                         |
| K5 | CO5 | To evaluate Real World IoT Design Constraints, Industrial Automation in IoT. |

| CONTENTS                                                                                    | Hours |
|---------------------------------------------------------------------------------------------|-------|
| UNIT I                                                                                      |       |
| Introduction to IoT: Internet of Things – Physical Design – Logical Design – IoT Enabling   |       |
| Technologies – IoT Levels & Deployment Templates – Domain Specific IoTs – IoT and           | 13    |
| M2M – IoT System Management with NETCONF – YANG – IoT Platforms Design                      |       |
| Methodology.                                                                                |       |
| UNIT II                                                                                     |       |
| <b>IoT Architecture:</b> M2M high-level ETSI Architecture – IETF Architecture for IoT – OGC | 12    |
| Architecture - IoT Reference model - Domain model - information model - functional          | 15    |
| model -communication model - IoT Reference Architecture.                                    |       |
| UNIT III                                                                                    |       |
| IoT Protocols: Protocol Standardization for IoT – Efforts – M2M and WSN Protocols -         |       |
| SCADA and RFID Protocols - Unified Data Standards - Protocols - IEEE 802.15.4 -             | 13    |
| BACNet Protocol - Modbus - Zigbee Architecture - Network Layer - 6LowPAN - CoAP -           |       |
| Security.                                                                                   |       |
| UNIT IV                                                                                     |       |
| Building IoT with RASPBERRY Pi and ARDUINO: Building IoT with RASPBERRY Pi                  |       |
| - IoT Systems - Logical Design using Python - IoT Physical Devices and Endpoints - IoT      | 13    |
| Device - Building blocks - Raspberry Pi - Board - Linux on Raspberry Pi - Raspberry Pi      |       |
| Interfaces - Programming Raspberry Pi with Python - Other IoT Platforms - Arduino           |       |
| UNIT V                                                                                      |       |
| Case studies: IoT Design-Home Automation, Cities, Environment, Agriculture,                 |       |
| Productivity Applications.                                                                  |       |
| Real world design constraints - Applications - Asset management, Industrial automation,     | 13    |
| smart grid ,Commercial building automation ,Smart cities - participatory sensing - Data     |       |
| Analytics for IoT - Software & Management Tools for IoT Cloud Storage Models &              |       |
| Communication APIs – Cloud for IoT – Amazon Web Services for IoT.                           |       |

#### 65

\*Italicized texts are for self study

Power point Presentations, Seminar, Assignment

#### **Text Book**

**Total Hours** 

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands – on Approach", Universities Press 2015.

#### **Reference Books**

- 1. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.
- 2. Honbo Zhou, "The Internet of Things in the cloud: A Middleware Perspective", CRC Press, 2012.
- 3. Jan Holler ,Vlasios Tsiatsis ,Catherine Mulligan , Stamatis , Karnouskos Stefan Avesand , David Boyle ," From Machine to- Machine to the Internet of Things Introduction to a New Age of Intelligence", Elsevier 2014.

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | Н    | S    | М    | Н    | S    |
| CO2       | S    | М    | М    | S    | L    |
| CO3       | М    | Н    | S    | Н    | М    |
| CO4       | М    | Н    | Н    | М    | Н    |
| C05       | S    | М    | М    | S    | L    |

| Course Designed by Verified by HOD |                     | Checked by             | Approved by              |  |
|------------------------------------|---------------------|------------------------|--------------------------|--|
| Name and Signature                 | Name with Signature | CDC                    | COE                      |  |
| Name:N.Karthikeyan                 | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name:Dr. R. Muthukumaran |  |
| Signature:                         | Signature:          | Signature:             | Signature:               |  |

M.Sc Computer Science

Г

Effective from the year 2019 Onwards

| Programme code: | M.Sc     | Programme Title : Master of Computer S |          | puter Science |
|-----------------|----------|----------------------------------------|----------|---------------|
| Course Code:    | 19PCS316 | Title                                  | Batch :  | 2019-2021     |
|                 |          | Programming Lab-VI:                    | Semester | III           |
| Hrs/Week:       | 5        | Angular JS                             | Credits: | 4             |

#### **Course Objective**

On successful completion of this course, students will gain the knowledge about the AngularJS framework and also to apply its various concepts in real-time web application development.

#### **Course Outcomes (CO)**

| K3 | C01 | To implement the programs for filters, modules, controllers and directives   |
|----|-----|------------------------------------------------------------------------------|
| K4 | CO2 | To evaluate the applications by applying the services, routes and animations |
| K5 | CO3 | To validate the forms by using model binding and events                      |

| Program using A                  | AngularJS                                                               |                                                                                                                                                |
|----------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.<br>2.<br>3.<br>4.<br>5.<br>6. | Expressions<br>Modules<br>Directives<br>Model<br>Controllers<br>Filters | <ul> <li>7. Services</li> <li>8. Events</li> <li>9. Forms</li> <li>10. Form Validation</li> <li>11. Routing</li> <li>12. Animations</li> </ul> |
|                                  |                                                                         |                                                                                                                                                |

Power point Presentations, Brain storming

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | S    | Н    | Н    | S    | Н    |
| CO2       | Н    | М    | М    | М    | S    |
| CO3       | Н    | S    | S    | Н    | М    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name: N.ArulKumar  | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

| Programme code: | M.Sc     | Programme Title :                        | Master of Com | puter Science |
|-----------------|----------|------------------------------------------|---------------|---------------|
| Course Code:    | 19PCS317 | Title                                    | Batch :       | 2019-2021     |
|                 |          | Programming Lab-VII :                    | Semester      | III           |
| Hrs/Week:       | 5        | Digital Image Processing<br>using MATLAB | Credits:      | 4             |

#### **Course Objective**

On successful completion of the course the students should understand about Image Processing, image compression and segmentation using MATLAB.

#### **Course Outcomes (CO)**

| K3 | C01 | To implement the fundamental image enhancement algorithms such as histogram                  |
|----|-----|----------------------------------------------------------------------------------------------|
|    |     | modification, contrast manipulation, and edge detection.                                     |
| K4 | CO2 | To analyze programming skills in image compression, segmentation and restoration techniques. |
| K5 | CO3 | To access MATLAB tools for image processing                                                  |

- 1. Crop, Resize, Rotate an image
- 2. Crop an image using Simulink
- 3. Resize an image using Simulink
- 4. Rotate an image using Simulink
- 5. Adjusting the contrast in color image using Simulink
- 6. Adjusting the contrast in intensity image using Simulink
- 7. Finding Histogram of a RGB image
- 8. Finding Histogram of a gray and negative image
- 9. Arithmetic Operations
- 10. Blurring with Deconvolution Algorithm
- 11. Sharpening of an image using Simulink
- 12. Unsharp Masking and High Boost Filtering using Simulink
- 13. Removing Salt & Pepper noise
- 14. Remove Noise (Median Filter) using Simulink
- 15. Deblurring with Wiener Filter
- 16. Correct Non-Uniform Illumination using Simulink
- 17. Count Object in an image using Simulink
- 18. Image Compression using Discrete Cosine Transform.
- 19. Performing Morphological Operations.
- 20. Edge Detection using Prewitt, Sobel and Roberts.

Note: Laboratory works are to be done on MATLAB 7.0 tool.

Power point Presentations, Assignment, Experience Discussion, Brain storming

#### MAPPING

| PS0<br>C0 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | Н    | S    | М    | Н    | S    |
| CO2       | S    | М    | Н    | S    | Н    |
| CO3       | М    | S    | S    | М    | М    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name: P.Jayapriya  | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

# ELECTIVE — II

| Programme Code: | M.Sc     | Programme Title :                       | Master of Con | mputer Science |
|-----------------|----------|-----------------------------------------|---------------|----------------|
| Course Code:    | 19PCS3E1 | Title                                   | Batch :       | 2019-2021      |
|                 |          | <b>ELECTIVE</b> – <b>II:</b> Artificial | Semester      | III            |
| Hrs/Week:       | 5        | Intelligence and Expert Systems         | Credits:      | 5              |
|                 |          |                                         |               |                |

#### **Course Objective**

On successful completion of the course the students have basic understanding of overview of artificial intelligence (AI) principles and approaches and enable the student to apply these techniques in applications which involve perception, reasoning and learning

| K1 | C01 | To remember basic exposition to the goals and methods of Artificial Intelligence            |
|----|-----|---------------------------------------------------------------------------------------------|
| K2 | CO2 | To understand the various searching techniques, constraint satisfaction problem and example |
|    |     | problems- game playing techniques.                                                          |
| K3 | CO3 | To apply these techniques in applications which involve perception, reasoning and learning. |
| K4 | C04 | To analyze and design a real world problem for implementation and understand the dynamic    |
|    |     | behavior of a system.                                                                       |
| K5 | C05 | To evaluate and design a real world problem for implementation and understand the dynamic   |
|    |     | behavior of a system                                                                        |

| CONTENTS                                                                                                                                                                                                                                                                                                                                             | Hours |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>UNIT I</b><br>Problem solving and AI – Puzzles and Games – Problem States and operators – Heuristic programming – state space representations – state descriptions – graph notations – non-deterministic programs.                                                                                                                                | 13    |
| <b>UNIT II</b><br>State space search methods – breadth first and depth first search – heuristic – admissibility – optimality of algorithms – performance measures – problem reduction representations – AND/OR graphs and higher level state space.                                                                                                  | 13    |
| <b>UNIT III</b><br>Problem reduction search methods – cost of solution trees – ordered search – alpha beta and minimum procedure – theorem proving in predicate calculus – syntax, semantics, Herbrand universe: variables, qualifiers, unification, resolvents.                                                                                     | 13    |
| <b>UNIT IV</b><br>Predicate calculus in problem solving – answer extraction process – resolution – Automatic program writing – predicate calculus – proof finding methods.                                                                                                                                                                           | 13    |
| <b>UNIT V</b><br>Expert systems: Expert systems and conventional programs – expert system organization –<br>Knowledge engineering: knowledge representation techniques – knowledge acquisition –<br>acquiring knowledge from experts – automating knowledge acquisition –Building an expert<br>system – difficulties in developing an expert system. | 13    |
| Total Hours                                                                                                                                                                                                                                                                                                                                          | 65    |

\*Italicized texts are for self study

Power point Presentations, Seminar, Assignment

#### **Text Books**

- 1. E Charnail, CK Reiesbeck and D V Medermett, "Artificial Intelligence Programming", Lawrence Erlbaum Associates, N J, 2011.
- 2. Donald A Waterman, "A Guide to Expert Systems", Tech knowledge series in knowledge engineering, 2010.

#### **Reference Books**

- 1. N J Nilson, "Principles of Artificial Intelligence", Tiega Press, Polo Alto, 2009.
- 2. Elain Rich and Kevin Knight, "Artificial Intelligence", McGraw Hill, 2000.

| MAPPING |
|---------|
|---------|

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | S    | S    | М    | Н    | S    |
| CO2       | М    | Н    | М    | S    | Н    |
| CO3       | М    | S    | S    | М    | Н    |
| CO4       | Н    | Н    | Н    | S    | М    |
| CO5       | М    | S    | S    | М    | Н    |

| Course Designed by  | Verified by HOD     | Checked by             | Approved by               |
|---------------------|---------------------|------------------------|---------------------------|
| Name and Signature  | Name with Signature | CDC                    | СОЕ                       |
| Name: N.Karthikeyan | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:          | Signature:          | Signature:             | Signature:                |

| Programme code:     | M.Sc     | Programme Title : Master of Computer Science |          | puter Science |
|---------------------|----------|----------------------------------------------|----------|---------------|
| <b>Course Code:</b> | 19PCS3E2 | Title                                        | Batch :  | 2019-2021     |
|                     |          | <b>ELECTIVE – II:</b> Machine                | Semester | III           |
| Hrs/Week:           | 5        | Learning                                     | Credits: | 5             |

#### **Course Objective**

On Successful completion of the course the students should gain knowledge on application of computer methods for management, analysis, interpretation, and prediction, as well as for the design of experiments.

| K1 | CO1 | To remember main areas of Machine Learning: supervised and unsupervised.        |
|----|-----|---------------------------------------------------------------------------------|
| K2 | CO2 | To understand a wide variety of learning algorithms.                            |
| K3 | CO3 | To apply a variety of learning algorithms to data                               |
| K4 | CO4 | To analyze how to perform evaluation of learning algorithms and model selection |
| K5 | CO5 | To design and implement various machine learning algorithms in a wide range of  |
|    |     | real-world applications                                                         |

| CONTENTS                                                                                    | Hours |
|---------------------------------------------------------------------------------------------|-------|
| UNIT I                                                                                      |       |
| MACHINE LEARNING FOUNDATIONS - Introduction-Bayesian modeling-Cox Jaynes                    | 13    |
| axioms- Bayesian inference and induction- models structures examples.                       |       |
| UNIT II                                                                                     |       |
| MACHINE LEARNING ALGORITHMS - Dynamic programming- EM/ GEM                                  | 13    |
| algorithms-Markov chain Monte carlo methods- simulated annealing genetic algorithm-         | 15    |
| Neural networks.                                                                            |       |
| UNIT III                                                                                    |       |
| APPLICATIONS - Sequence coding- correlations- Prediction: secondary structure, signal       | 13    |
| peptides and cleavage sites-applications for DNA & RNA nucleotide sequences-                | 15    |
| Performance evaluation.                                                                     |       |
| UNIT IV                                                                                     |       |
| Introduction- likelihood & Basic algorithms- Learning algorithms- Applications: general     | 13    |
| aspects, proteins, DNA and RNA.                                                             |       |
| UNIT V                                                                                      |       |
| Models for phylogeny-substitution probabilities-Data likelihood-optimal trees- modeling for | 13    |
| array data.                                                                                 |       |
| Total Hours                                                                                 | 65    |
| *Italicized texts are for self study                                                        |       |
| Power point Presentations, , Seminar, Assignment                                            |       |
|                                                                                             |       |

#### **Text Books:**

1. Andrea Isoni, 2016, "Machine Learning for Web", Kindle Edition.

2. Matthew Krik, 2014, "Thought Machine Learning", Kindle Edition.

#### **Reference Books:**

- 1. Steffen Schulze-Kremer, "Molecular Bioinformatics: Algorithms and Applications", Walter de Gruyter, 2013.
- 2. Yi-Ping Phoebe. Chen, "Bioinformatics Technologies", Springer, 2015.
- 3. Zheng Rong Yang, "Machine Learning Approaches to Bioinformatics" (Science, Engineering, and Biology Informatics), World Scientific Publishing Company; 1 edition 2010.

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | М    | S    | S    | S    | М    |
| CO2       | Н    | М    | Н    | Н    | L    |
| CO3       | Н    | М    | Н    | М    | Н    |
| CO4       | М    | S    | Н    | Н    | S    |
| CO5       | М    | Н    | L    | М    | S    |

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name: Dr.M.Sakthi  | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:         | Signature:          | Signature:             | Signature:                |

| Programme code: | M.Sc     | Programme Title :                     | Master of Co | mputer Science |
|-----------------|----------|---------------------------------------|--------------|----------------|
| Course Code:    | 19PCS3E3 | Title                                 | Batch :      | 2019-2021      |
|                 |          | <b>ELECTIVE</b> – <b>II:</b> Embedded | Semester     | III            |
| Hrs/Week:       | 5        | Systems                               | Credits:     | 5              |

#### **Course Objective**

On successful completion of the course the students should gain knowledge on Hardware fundamentals, Software Architecture, Interrupts, Embedded software lifecycle and tools.

| K1 | C01 | To remember the differences between the general computing system and the embedded |  |  |  |  |
|----|-----|-----------------------------------------------------------------------------------|--|--|--|--|
|    |     | system, also recognize the classification of embedded systems.                    |  |  |  |  |
| K2 | CO2 | To understand the RTOS and its programming aspects.                               |  |  |  |  |
| КЗ | CO3 | To apply the of design real time embedded systems using the concepts of RTOS.     |  |  |  |  |
| K4 | C04 | To Analyze various examples of embedded systems based on ATOM processor.          |  |  |  |  |
| K5 | C05 | To evaluate hardware fundamentals, interrupts, RTOS environment Basic design,     |  |  |  |  |
|    |     | embedded software Lifecycle, Software development tools.                          |  |  |  |  |

| CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hours |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>UNIT I</b><br>Hardware Fundamentals: Terminology-Gates-Timing Diagrams-Memory Advanced<br>Hardware Fundamentals: Microprocessors-Microprocessor architecture-Direct Memory<br>Access-Conventions and Schematics-Introduction to embedded systems: An embedded<br>system-Processor in the system-Exemplary embedded systems.                                                                                                            | 13    |
| <b>UNIT II</b><br>Interrupts and Software Architecture Interrupts: Interrupt basics-Interrupt service routines<br>Survey of Software Architectures: Round Robin with interrupts-Function-Queue-<br>Scheduling Architecture-Real Time Operating Systems Architecture Introduction to Real<br>Time Operating Systems: Selecting in RTOS-Tasks and Task States-Tasks and Data-<br>Semaphores and shared data.                                | 13    |
| <b>UNIT III</b><br>Concepts of RTOS More Operating System Services: Interrupt process communication-<br>Message queues-Mailboxes and pipes-Timer functions-Events-Memory management-<br>interrupt routines in an RTOS environment Basic design using a Real Time Operating<br>System: Principles-encapsulating semaphores and queues-hard real time scheduling<br>considerations-saving memory space and power-introduction to RTL & QNX. | 13    |
| <b>UNIT IV</b><br>Embedded software life cycle and tools Embedded software Lifecycle: Software Algorithm complexity-Software development process life cycle and its models.                                                                                                                                                                                                                                                               | 13    |
| <b>UNIT V</b><br>Software development tools: development tools-hosts and target machine-linker/locators for<br>embedded software-getting embedded software into the target machine Debugging<br>techniques: testing on your host machine-instruction set simulators-the asset macro-using                                                                                                                                                 | 13    |

laboratory tools - Case Study.

#### 65

\**Italicized* texts are for self study

Power point Presentations, Seminar, Assignment

#### **Text Books**

**Total Hours** 

1. David.E.Simon, "An embedded system primer", Addison Wesley-2001.

2. Raj Kamal, "Embedded Systems architecture, programming and design", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2003.

#### **Reference Books**

1. K.V. Shibu, Introduction To Embedded Systems, Tata McGraw, 2009.

2. Lori Matassa and Max Domeika, Break Away with Intel® Atom<sup>TM</sup> Processors,2010, Intel press.

#### MAPPING

| PSO<br>CO | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|-----------|------|------|------|------|------|
| C01       | S    | S    | М    | Н    | S    |
| CO2       | М    | Н    | М    | S    | Н    |
| CO3       | М    | S    | S    | М    | Н    |
| CO4       | Н    | Н    | Н    | S    | М    |
| CO5       | М    | Н    | М    | S    | Н    |

| Course Designed by     | Verified by HOD     | Checked by             | Approved by               |
|------------------------|---------------------|------------------------|---------------------------|
| Name and Signature     | Name with Signature | CDC                    | COE                       |
| Name: M.Meenakirithika | Name: Dr.M.Sakthi   | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |
| Signature:             | Signature:          | Signature:             | Signature:                |

# **SEMESTER IV**

| Programme code:     | M.Sc     | Programme Title : Master of Computer Science |          |           |
|---------------------|----------|----------------------------------------------|----------|-----------|
| <b>Course Code:</b> | 19PCS418 | Title                                        | Batch :  | 2019-2021 |
|                     |          | Industrial Project Work and                  | Semester | IV        |
| Hrs/Week:           | -        | viva voce (individual)                       | Credits: | 10        |

**Instructional Notes:** Students are required to develop entire new software system or to enhance/modify functionalities of existing software or to provide customization based on existing technology/framework to fulfill specific requirements.

### MAXIMUM MARKS : 200

Project Evaluation & Viva Voce : 150 (Both Internal & External Examiner)

Paper Publications in UGC Journals : 50 (Only Internal Examiner)

| Course Designed by | Verified by HOD     | Checked by             | Approved by               |
|--------------------|---------------------|------------------------|---------------------------|
| Name and Signature | Name with Signature | CDC                    | COE                       |
| Name: Dr.M. Sakthi | Name: Dr.M. Sakthi  | Name: Dr. M. Durairaju | Name: Dr. R. Muthukumaran |

#### M.Sc Computer Science

| M.Sc Computer Science |            |            | ive from the year 2019 Onwards |
|-----------------------|------------|------------|--------------------------------|
| Signature:            | Signature: | Signature: | Signature:                     |