PG DEPARTMENT OF CHEMISTRY

SYLLABUS

2023-2025 Batch

Dr. K. POONKODI, M.Sc., M.Phil., Ph.D.

Mrs. K. VIMALADEVI, M.Sc., M.Phil., (Ph.D)

Dr. V. PRABHU, M.Sc., Ph.D.

Mrs. M. ANUSUYA, M.Sc., M.Phil., (Ph.D)

Dr. M.VELAYUTHAM PILLAI, M.Sc., M.Phil., Ph.D.

NGM COLLEGE (Autonomous)

Affiliated to Bharathiar University

Re-Accredited by NAAC & ISO 9001:2015 certified

90, Palghat Road, Pollachi- 642001, Coimbatore (Dist.)

Phone: 04259-234868. 234870 Fax: 04259-234869

Website: www.ngmc.org

PREAMBLE

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE, POLLACHI

Our dream is to make the college an institution of excellence at the national level by imparting quality education of global standards to make students academically superior, socially committed, ethically strong, spiritually evolved and culturally rich citizens to contribute to the holistic development of the self and society. Training students to become role models in academic arena by strengthening infrastructure, upgrading curriculum, developing faculty, augmenting extension services and imparting quality education through an enlightened management, committed faculty who ensure knowledge transfer, instill research aptitude and infuse ethical, cultural values to transform students into disciplined citizens in order to improve quality of life.

PG DEPARTMENT OF CHEMISTRY

Department of M.Sc. Chemistry was established in July, 2015 with following Vision and Mission. It offers a wide range of courses including Inorganic Chemistry, Organic Chemistry, Physical Chemistry, Medicinal Chemistry, Green Chemistry, Nano Chemistry and Analytical Chemistry etc. Experts from Pure and Applied Chemistry domain will teach the courses and students will develop a thorough understanding of fundamentals and experimental concepts of Chemistry. There will be an opportunity for the students to participate in an extensive and varied seminar, workshop, conferences, association, research club activities, extension and internship programmes and gain experience in a large variety of projects. The outcome based education is established in the year 2019.

VISION

Establish a center of excellence for leading-edge Chemistry education. The main goal will be to produce highly skilled graduates capable of working in the rapidly changing scenario in the field of chemical science and technology during their lifetime.

MISSION

Impart quality education through up-to-date knowledge and information in the field of Chemistry related to science and technology and enable them to take up the challenge of the world to come.

CHOICE BASED CREDIT SYSTEM (CBCS)

The CBCS provides an opportunity for the students to choose courses from the prescribed courses comprising core, elective/minor or skill based courses. The courses can be evaluated following the grading system, which is considered to be better than the conventional marks system. Therefore, it is necessary to introduce uniform grading system in the entire higher education in India. This will benefit the students to move across institutions within India to begin with and across countries. The uniform grading system will also enable potential employers in assessing the performance of the candidates. In order to bring uniformity in evaluation system and computation of the Cumulative Grade Point Average (CGPA) based on student's performance in examinations, the UGC guidelines to be followed.

CORE COURSE

A course, which should compulsorily be studied by a candidate as a core requirement is termed as a Core Course.

ELECTIVE COURSE

Generally a course which can be chosen from a pool of courses and which may be very specific or specialized or advanced or supportive to the discipline/ subject of study or which provides an extended scope or which enables an exposure to some other discipline/subject/domain or nurtures the candidate's proficiency/skill is called an Elective Course.

PROJECT WORK/DISSERTATION

It is considered as a special course involving application of knowledge in solving / analyzing /exploring a real life situation / difficult problem. Project/Dissertation work would be of 5 credits.

OUTCOME BASED EDUCATION (OBE)

It is the educational approach which focuses on student centric education in the context of development of personal, social, professional and knowledge (KSA) requirements in one's career and life. Outcome Based Education is an approach that focuses on outcomes such as the achievements of students that are measurable, proven and can be improved. It is simply the establishment of expected goals or outcomes for different levels of graduate and a commitment to ensure that every student achieves at least those minimum proficiencies before being allowed to post graduate.

The authorities of Nallamuthu Gounder Mahalingam College, Pollachi in lieu of accreditation standards of National Assessment and Accreditation Council, decided to opt for Outcomes Based Education (OBE). As the part of the decision in Academic council meeting

was held at the campus. The detailed document is designed and the existing curriculum of the department is transformed in to the framework of OBE. This is the first step towards the implementation of OBE in the department. The document will serve all stakeholders in the effective implementation of the curriculum. The OBE is continuous process for quality enhancement and it will go a long way in order to enhance the competencies and employability of the Post-graduates of the department.

The M.Sc. Chemistry programme aims that the graduates will become successful professional by demonstrating rational and analytical thinking abilities. The graduates will be mould to communicate efficiently and work in interdisciplinary research and demonstrate scientific leadership in academia and industries.

Programme Educational Outcomes

PEO1	Mastering in concepts and problem solving: To understand major concepts, theoretical principles, experimental findings and the ability to employ them for critical thinking and efficient problem solving skills in different areas of Chemistry.
PEO2	Fostering Academic Ambitions: Be motivated to prepare the students to pursue higher studies and research to meet out academic demands of the country.
PEO3	Exploring Chemistry Techniques : Proficient in diverse chemistry techniques and their applications in scientific and engineering contexts.
PEO4	Stimulating Student Writing : Students will be stimulated to interchange their knowledge and skills for developing independent writing in their field of study.
PEO5	Empowering Responsible Graduates: Graduates will contribute to the growth of the nation and society as ethical and responsible professionals.

Programme Outcomes

After completion of the M.Sc. Chemistry Programme, the students must be able to

PO1	Disciplinary knowledge and skills: Capable of demonstrating (i) comprehensive knowledge and understanding of major concepts, theoretical principles and experimental findings in chemistry and its different subfields (analytical, inorganic, organic and physical), and other related fields of study, including broader interdisciplinary subfields such as life science, environmental science and material sciences; (ii) ability to use modern instrumentation for chemical analysis and separation.
PO2	Skilled communicator: Ability to transmit complex technical information relating to chemistry in a clear and concise manner in writing and orally skills.

PO3	Critical thinker and problem solver: Ability to employ critical thinking and efficient problem solving skills in the four basic areas of chemistry (analytical, inorganic, organic, and physical).
PO4	Sense of inquiry: Capability for asking relevant/appropriate questions relating to issues and problems in the field of chemistry, and planning, executing and reporting the results of an experiment or investigation.
PO5	Team player/ lifelong learners: Capable of working effectively in diverse teams in both classroom, laboratory and in industry and field-based situations as well as Capable of self-paced and self-directed learning aimed at personal development and for improving knowledge/skill development and reskilling.
PO6	Skilled project manager: Capable of identifying/mobilizing appropriate resources required for a project, and manage a project through to completion, while observing responsible and ethical scientific conduct; and safety and chemical hygiene regulations and practices.
PO7	Digital literacy: Capable of using computers for chemical simulation and computation and appropriate software for analysis of data, and employing modern library search tools to locate, retrieve, and evaluate chemistry-related information.
PO8	Ethical awareness/reasoning: Avoiding unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, and appreciate environmental and sustainability issues.

Programme Specific Outcomes

After completion of the M.Sc. Chemistry Programme, the students must be able to

PSO -01	Become Proficient in synthetic, analytical, electrochemistry, Phytochemistry, spectral techniques, characterization to develop interdisciplinary approach.
PSO -02	Develop new innovations in chemical, pharmaceutical and allied chemical industries and successfully implement them at an industrial scale.

Mapping

PEOs POs \ PSOs	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	Н	Н	Н	Н	Н
PO2	М	н	М	Н	Н
PO3	Н	M	Н	Н	Н
PO4	Н	Н	Н	Н	Н
PO5	Н	Н	M	Н	Н
PO6	Н	M	Н	Н	Н
PO7	Н	Н	Н	Н	Н
PO8	Н	Н	М	Н	Н
PSO1	Н	М	Н	Н	Н
PSO2	Н	M	Н	Н	Н

SCHEME OF SYLLABUS & EXAMINATION

NALLAMUTHU GOUNDER MAHALINGAM COLLEGE

(Autonomous and Affiliated to Bharathiar University)
Accredited by NAAC, An ISO 9001:2015 Certified Institution

SEMESTER - I

Semester	Subject	Title of the Paper	Н	irs /W	eek	Exam	Maximu	Maximum Marks		ximum Marks Total Marks		Credits
	Code		L	Т	P	Hrs.	Internal	Internal External		0100208		
	23PCY101	Core-I-Inorganic Chemistry –I-Solid State and Nuclear Chemistry	4	11		3	25	75	100	4		
I	23PCY102	Core-II-Organic Chemistry – I- Organic Reaction Mechanisms	4	1		3	25	75	100	5		
	23PCY103	Core-III-Physical Chemistry – I- GroupTheory and Chemical Kinetics	4	orners T		3	25	75	100	5		
	23PCY207	Core-VII-Inorganic Chemistry Practical-I			5							
	23PCY208	Core-VIII -Organic Chemistry Practical-I			5							
	23PCY209	Core-IX- Physical Chemistry Practical –I			5							
		Total	12	3	15	9	75	225	300	14		

SEMESTER - II

Semester	I itle of the Paner		Н	[rs /W	/eek	Exam	Maximum Marks		Total	Credits
	Code	Title of the Laper	L	Т	P	Hrs.	Internal	External	Marks	
	23PCY204	Core-IV-Inorganic Chemistry – II-Coordination Chemistry	4	1		3	25	75	100	4
	23PCY205	Core-V Organic Chemistry-II – Organic Reactions and Stereochemistry	4	1		3	25	75	100	5
	23PCY206	Core-VI Physical Chemistry-II – Quantum Chemistry and Nano Chemistry	4	1		3	25	75	100	4
	23PCY2E1	*Major Elective –I – Green Chemistry, Research Mathadalagy & Cylon Sagyrity		^						
II	23PCY2E2	Methodology & Cyber Security * Electrochemistry	3	18		3	25	75	100	3
	23PCY2E3	* Advanced Polymeric Materials			10 0 00					
	23PCY2N1	*Non Major Elective Chemistry in day to day life	2			3		100	100	2
	23PCY207	Core-VII-Inorganic Chemistry Practical-I			4	6	40	60	100	4
	23PCY208	Core-VIII -Organic Chemistry Practical-I			3	6	40	60	100	4
	23PCY209	Core-IX- Physical Chemistry Practical –I			3	6	40	60	100	4
Total			17	3	10	33	220	580	800	30

	SEMESTER - III											
Semester	Subject	Title of the Paper	Hrs /Week					Exam	Maximum Marks		Total	Credits
	Code		L	Т	P	Hrs.	Internal	External	Marks			
	23PCY310	Core-X- Organic Chemistry – III– NaturalProducts and Organic Reagents	4	1		3	25	75	100	5		
	23PCY311	Core-XI- Physical Chemistry –III – Classical and Statistical Thermodynamics	4	1		3	25	75	100	4		
	23PCY312	Core-XII- Organic Spectroscopy	4	1		3	25	75	100	5		
III	23PCY3E4 23PCY3E5 23PCY3E6	Major Elective -II – *Organometallic Chemistry * Material Science *Dye Chemistry	3		- 42	3	25	75	100	3		
	23PCY415	Core-XV- Inorganic Chemistry Practical-II	-		4							
	23PCY416	Core-XVI-Organic Chemistry Practical—II	Contract Con	6 <u>11</u> 28	4							
	23PCY417	Core-XVII-Physical Chemistry Practical—II			4							
		Total	15	3	12	12	100	300	400	17		

SEMESTER - IV

Semester	Subject	Title of the Paper	Н	irs / Wee	ek	Exam	Maximum Marks		Total Marks	Credits
	Code		L	Т	P	Hrs.	Internal	External		
	23PCY413	Core-XIII- Inorganic Chemistry –III- Bioinorganic Chemistry	4	1		3	25	75	100	5
	23PCY414	Core-XIV- Instrumental Methods of Chemical Analysis	4	1		3	25	75	100	4
IV	23PCY4E7 23PCY4E8 23PCY4E9	*Major Elective –III- Phytochemical Techniques and Health Chemistry *Computational Chemistry *Green Chemistry	3			3	25	75	100	3
	23PCY415	Core-XV- Inorganic Chemistry Practical-II			5	6	40	60	100	4
	23PCY416	Core-XVI-Organic Chemistry Practical–II	1	0.000150	5	6	40	60	100	4
	23PCY 417	Core-XVII-Physical Chemistry Practical–II			5	6	40	60	100	4
	23PCY 4P1	Core Project Work & Viva Voce	2			6	25	75	100	5
		Total	13	2	15	33	220	480	700	29
		Grand Total (Total Marks +	Total C	redits)					2200	90
		* Students can choose a	any one	of the pa	pers as e	electives				

LIST OF ELECTIVES

SEMESTER	SUBJECT CODE & TITLE
II	MAJOR ELECTIVE-I 23PCY2E1 – Green Chemistry, Research Methodology & Cyber Security 23PCY2E2 - Electrochemistry 23PCY2E3 - Advanced Polymeric Materials
III	MAJOR ELECTIVE-II 23PCY3E4 - Organometallic Chemistry 23PCY3E5 - Material Science 23PCY3E6 - Dye Chemistry
IV	MAJOR ELECTIVE-III 23PCY4E7 - Phytochemical Techniques and Health Chemistry 23PCY4E8 – Computational Chemistry 23PCY4E9 - Green Chemistry

	CO-SCHOLASTIC COURSES										
	ADVANCED LEARNERS (Optional)										
S. No	Semester	Course	Hours/ Week	Total Hours	Internal Marks	External Marks	Total Marks	Credits			
			/								
1	III	23PCY3AL - Applied Chemistry (Optional)	-	-	-	-		2*			
		ONLINEO	COURSE	S							
2	I/II	Swayam, MOOC Course etc.	-	-	-	-	-	2*			
		VALUE ADD	ED COU	JRSES							
3	II & IV	Value Added Course-I 23PCY2VA- Entrepreneurial Ventures in Chemistry	2	30	25	25	50	2*			
4	II & IV	Value Added Course–II 23PCY4VA-Biofuels and Energy Storage Devices	2	30	25	25	50	2*			
		CERTIFICATE C	OURSES	S (Option	al)						
5	III	Certificate Course—I 23PCYCFC01-Fundamentals of Pharmaceutical Chemistry	2	30	50	50	100	2*			
	•	The scholastic courses are only counted for the degree, the completion of Co-scholastic Courses are optional only.	Ū	Ū	Ū						

Question Paper Pattern

(Based on Bloom's Taxonomy)

K1-Remember; K2- Understanding; K3- Apply; K4-Analyze; K5- Evaluate

1. Theory Examinations: 75 Marks

(i) Test- I & II, ESE:

Knowledge Level	Section	Marks	Description	Total
K1 & K2 (Q 1 -10)	A (Q1 – 5 MCQ) (Q6 – 10 Define / Short Answer / MCQ)	10 x 1 = 10	MCQ / Define	
K3 (Q 11-15)	B (Either or pattern)	5 x 5 = 25	Short Answers	75
K4 & K5 (Q 16 – 20)	C (Either or pattern)	5x 8 = 40	Descriptive/ Detailed	

2. Theory Examinations: 100 Marks (NME)

Knowledge Level	Section	Marks	Description	Total
K3 (Q 1 -8)	A (Q 1 – 8) Answer any Five	5 x 5 = 25	Short Answers	
K4 & K5 (Q 9-16)	B (Q 9 – 16) Answer any Five	5 x 15 = 75	Descriptive/ Detailed	100

3. Practical Examinations: 100 Marks

Knowledge Level	Criterion	External/Internal Marks	Total
K3	130	60/40	
K4	Record work & Practical	60/40	100
K5		<u> </u>	

Components of Continuous Assessment THEORY

Maximum Marks: 100; CIA Mark: 25; CEE Mark: 75

Components		Calculation	CIA Total	
Test 1	75			
Test 2 / Model	75	(75.75.15.10)/7	25	
Assignment / Digital Assignment	15	(75+75+15+10)/7	23	
Others#	10			

[#] Others may include class participation, case study presentation, field work, field survey, group discussion, term paper, workshop/conference participation, presentation of papers in conferences, quiz, report/content writing, seminars.

PRACTICAL

Maximum Marks: 100; CIA Mark: 40; CEE Mark: 60

Compor	ents	Calculation	CIA Total
Test / Model	30		
Observation Note	5	30+5+5	40
Record	5		

PROJECT

Maximum Marks: 100; CIA Mark: 25; CEE Mark: 75

Components	Calculation	CIA Total	
Review I (Introduction)	5		
Review II (Literature Survey)	5	05 05 05 10	
Review III (Results and Discussion)	5	05+05+05+10	25
Report Submission	10	V (

PROJECT EXTERNAL

External Total – 75 marks

Project	Total – 50 marks
Relevance of the topic to the academic / society	10 Marks
Objectives	10 Marks
Experimental design	15 Marks
Results and discussion	15 Marks
Viva Voce	Total – 25 marks
Presentation	15 Marks
Discussion	10 Marks

STUDENT SEMINAR EVALUATION RUBRIC

Grading Scale:

A	В	C	D	
8-10	5-7	3-4	0-2	

CRITERIA	A - Excellent	B – Good	C - Average	D - Inadequate
Organization of presentation	Information presented as interesting story in logical, easy to follow sequence	Information presented in logical sequence; easy to follow	Most of information presented in sequence	Hard to follow; sequence of information jumpy
Knowledge of subject & References	Demonstrated full knowledge; answered all questions with elaboration & Material sufficient for clear understanding AND exceptionally presented Uses graphics that	elaborate &	information; answered most questions & Material sufficient for clear understanding	Does not have grasp of information; answered only rudimentary Questions & Material not clearly related to topic OR background dominated seminar Uses graphics that
Skills using ICT Tools	explain and reinforce text and presentation	explain text and presentation	relate to text and presentation	rarely support text and presentation
Eye Contact	Refers to slides to make points; engaged with audience	Refers to slides to make points; eye contact majority of time	Refers to slides to make points; occasional eye contact	Reads most slides; no or just occasional eye contact
Elocution – (Ability to speak English language)	Correct, precise pronunciation of all terms Voice is clear and steady; audience can hear well at all times	Incorrectly pronounces few terms Voice is clear with few fluctuations; audience can hear well most of the time	Incorrectly pronounces some terms Voice fluctuates from low to clear; difficult to hear at times	Mumbles and/or Incorrectly pronounces some terms Voice is low; difficult to hear

WRITTEN ASSIGNMENT GRADING RUBRIC

Grading Scale:

A	В	С	D	F
13-15	10-12	7-9	4-6	0-3

CRITERION	A – Excellent	B – Good	C - Average	D - Below Average	F - Inadequate
Content & Focus	Hits on almost all content exceptionally clear	Hits on most key points and writing is interesting	Hits in basic content and writing is understandable	Hits on a portion of content and/or digressions and errors	Completely off track or did not submit
Sentence Structure & Style	* Word choice is rich and varies * Writing style is consistently strong * Students own formal language	* Word choice is clear and reasonably precise * Writing language is appropriate to topic * Words convey intended message	* Word choice is basic * Most writing language is appropriate to topic * Informal language	* Word choice is vague * Writing language is not appropriate to topic * Message is unclear	* Not adequate
Sources	Sources are cited and are used critically	Sources are cited and some are used critically	Some sources are missing	Sources are not cited	Sources are not at all cited
Neatness	Typed; Clean; Neatly bound in a report cover; illustrations provided	Legible writing, well- formed characters; Clean and neatly bound in a report cover	Legible writing, some ill-formed letters, print too small or too large; papers stapled together	Illegible writing; loose pages	Same as below standard
Timeliness	Report on time	Report one class period late	Report two class periods late	Report more than one week late	Report more than 10 days late

Programme Cod	ogramme Code: M.Sc		Programme	Programme Title:		Master of Chemistry	
		22DGV4.04		Inorganic Chemistry –I- Solid		Batch:	2023 - 2025
Course Code:	ourse Code: 23PCY101 State and Nuclear Chemistry		State and Nuclear Chemistry		Semester:	I	
Lecture Hrs./Week	4	Tutorial	1	Total Hrs/ Sem 75		Credits:	4
Course Objectives							
* To	* To gain knowledge in solid state Chemistry.						
* To emphasize the significance of crystallographic properties and description of crystal structures.							
* To acquire awareness about the defects in crystal structure and its effect in electrical properties							
* Ability to know the principle of nuclear model, application of radioactive counting techniques and radioactive isotopes.							

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Student will know through knowledge about the structural properties of chains, cages and metal clusters.	K2
CO2	Student will understand the various types of close packing arrangements of different solid structures.	K2
CO3	Distinguish the types of solids, their defects and electrical properties of solids.	K4
CO4	Evaluate n/p ratio, binding energy and Q-value of nuclear reactions.	K4
CO5	Apply the nuclear chemistry principles and its application in various fields.	K5

Units	Content	Hrs
Unit I	 Chains – Catenation, heterocatenation, isopolyanions, heteropolyanions (explanation with examples). Cages –Structure and bonding of phosphorus compounds, boranes, carboranes and metallocene carboranes. Metal clusters - Structure and bonding of dinuclear, trinuclear, tetra nuclear and hexa nuclear clusters - polyatomic zintl anions and cations - chevrel phases - fullerenes and their applications. Rings - Structure and bonding of borazines - phosphonitrilic compounds- sulphur - nitrogen ring compounds (S4N4). 	15

Unit II	Solid State Chemistry –I Types of solids - close packing of atoms and ions - bcc , fcc and hcp voids - radius ratio - derivation - its influence on structures - structures of rock salt - cesium chloride - wurtzite — zinc blende - rutile - fluorite - antifluorite - diamond and graphite - spinel - normal and inverse spinels and perovskite - lattice energy of ionic crystals - Madelung constant - Born-Haber cycle and its applications. Solid State Chemistry –II Metallic state - free electron theory and band theory - non - stoichiometry - point defects	15
Unit III	in solids - Schottky and Frenkel defects - linear defects - dislocations - effects due to dislocations - electrical properties of solids - insulators - intrinsic semiconductors - impurity semiconductors (n and p- type) and superconductors - elementary study of liquid crystals.	15
Unit IV	Nucleus: nuclear structure - stability of nuclei - packing fraction - even - odd nature of nucleons - n/p ratio - nuclear potential - binding energy and exchange forces - shell model and liquid drop model. Radioactive isotopes - Decay of radio nuclei- rate of decay - determination of half-life period - secular equilibrium and decay series. Particle acceleration and counting techniques: linear accelerator - cyclotron and synchrotron - betatron - G. M. counter - proportional and scintillation counters.	15
Unit V	Nuclear Chemistry – II Modes of decay: alpha, beta, gamma and orbital electron capture - nuclear isomerism - internal conversions - Q value - nuclear cross section - threshold energy and excitation functions. Type of nuclear reactions with natural and accelerated particles - transmutation - stripping and pick-up - spallation - fragmentation, etc fission - characteristics of fission reaction - product distribution and theories of fission - fissile and fertile isotopes - U235, U238, Th232 and Pu239 - atom bomb - nuclear fusion - stellar energy - synthesis of new elements - principles underlying the usage of radioisotopes in analysis - agriculture - industry and medicine - mechanism of chemical reactions - uses of radioisotopes in analytical chemistry - isotopic dilution analysis - neutron activation analysis and dating methods. Hot-atom chemistry-Safety measures, Disposal of Nuclear Wastes.	15
	Total contact Hrs	75

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

23PCY101

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1.	Puri. B. R, Sharma. L. R and Madan S. Pathania	Principles of Inorganic Chemistry	Vishal Publishing Co, 41 st Edition	2006
2.	Gurdeep Raj	Advanced Inorganic Chemistry, Vol-I	Geol Publishing House, 12 th Edition	2014
3.	Madan. R.D	Advanced Inorganic Chemistry, Vol-I	S. Chand & company, New Delhi, 3 rd Edition	2012
4.	Arnikar, H.J	Essentials of Nuclear Chemistry	New Age International, 4 th Edition	2000

Reference Books

		VA 255 W	L/III	
S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1.	James E. Huheey Ellen A. Keiter	Inorganic chemistry	Pearson India Limited, 4 th Edition	2006
2.	Albert Cotton. F and Geoffrey Wilkinson	Advanced Inorganic Chemistry	Wiley & Sons, 6 th Edition	2014
3.	Anthony R. West	Solid State Chemistry and its Application	Wiley India	2011
4.	Lee J. D.	Concise Inorganic Chemistry	Wiley India	2010 Reprint
5.	Keith F. Purcell and John, C. Kotz	Inorganic chemistry	Holt- Saunders International Edition	1980
6.	Bodie E. Douglas, Darl H. McDaniel John J. Alexander	Concepts and Models of Inorganic Chemistry	Wiley & Sons, 3 rd Edition	1970
7.	Gary L. Miessler and Tarr D. A.	Inorganic Chemistry	Pearson Publication, 3 rd Edition	2004

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

Lecture 4 - Crystal Structure - 5 (Miller-Bravais Indices, Linear and Planar Density) - Bing video
Calculation of X-ray Density for Cubic crystal system using Lattice parameter and Bragg's Law - YouTube
XII- 1 # 8, Formula of a Compound and Number of Voids - Bing video
https://nptel.ac.in/courses/104/103/104103069/
https://nptel.ac.in/courses/104/104/104101/
https://nptel.ac.in/courses/112/103/112103243/

Mapping

				1410	apping					
PO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	M	Н	Н	Н	M	L	M	M	Н	M
CO2	M	Н	M	H	M	SVCT	L	M	Н	Н
CO3	Н	M	Н	M	Н	M	Н	Н	Н	M
CO4	Н	M	Н	Н	M	N -1	M	Н	M	M
CO5	Н	Н	M	M	M	Y/1-	M	M	Н	-

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.V. Prabhu Dr. M. Velayutham Pillai	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code: M.Sc		Programme Title:		Master of Chemistry			
				Organic Chemistry–I- Organic Reaction Mechanisms		Batch:	2023 – 2025
Course Code:	23PCY102		Semester:			I	
Lecture Hrs./Week	4	Tutorial	1	Total Hrs/Sem	75	Credits:	5
Course Objectives							

Course Objectives

- * To understand the aromaticity of organic molecules and reaction mechanisms.
- * To provide knowledge about electrophilic, nucleophilic substitution and elimination reactions.
- * To learn about the basic concept about organic reaction intermediates.

Course Outcomes

On the completion of the course the student will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Understand the aromaticity of compounds and develop skills for identifying the kinetics of reactions.	K2
CO2	Explain the mechanism of different types of substitution, addition and elimination reactions for synthesizing organic compounds.	К3
CO3	Apply the mechanisms in solving chemical reactions.	К3
CO4	Inspect the different types of reactions involved in chemical synthesis and various naming reactions.	K4 & K5
CO5	Evaluate the various types of reaction mechanisms.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Units	Content	Hrs
Unit I	Aromaticity: Aromatic character – Huckel's Molecular orbital theory for aromaticity (HMO), concept of aromaticity and anti aromaticity – Critereia for aromaticity, Non-benzenoid aromatic compounds-Monocyclic and bicyclic non-benzenoid neutral compounds (Annulenes and azulenes). Antiaromatic and Homoaromatic compounds- Alternant and non-alternant hydrocarbons. Kinetic and Non-kinetic Methods of Determination of Reaction Mechanisms: Guidelines for proposing reasonable mechanism – Energetics and energy profile diagrams - Reaction Mechanism: Non kinetic methods- Product analysis, intermediate criteria (isolation, trapping and detection) - Isotopic labeling and cross over experiments, Stereochemical evidence.	

	Kinetic methods - Primary and secondary kinetic isotopic effects. Mechanistic implications of rate law- Isotope effects. Kinetic and thermodynamic control of reactions - Hammonds postulates, linear free energy relationship - Hammett and Taft equations.	
	Electrophilic substitution reactions: Aromatic Electrophilic Substitution Reactions: Arenium ion mechanism - orientation and reactivity in mono substituted benzene rings	
Unit II	– steric effects and ortho/para ratios - <i>ipso</i> attack, orientation in di-substituted benzene rings. Typical reactions - Friedel Crafts alkylation & acylation, Vilsmeier-Haack reaction, Gattermann-Koch reaction, Hofmann-Martius, Jacobsons reaction, Houben-Hoesch reaction, Diazonium coupling, Stork enamine reactions and Bischler-Napieralski reaction.	15
	Aliphatic Electrophilic Substitution Reactions – Mechanisms: SE1, SE2, and SEi mechanism. Factors affecting reactivity in SE reactions – Typical reactions – hydrogen exchange and migration of double bond, halogenation of carbonyl compounds.	
	Nucleophilic Substitution Reactions:	
Unit III	Aliphatic Nucleophilic Substitution: S_N1 , S_N2 and S_Ni reactions and mechanisms - factors affecting nucleophilic substitution reaction - ambident nucleophiles and ambident substrates. Substitution at vinyl carbon and allylic carbon - hydrolysis of esters ($A_{Ac}1$, $A_{Ac}2$ and $B_{Ac}2$ only). Neighbouring group participation. Aromatic Nucleophilic Substitution: S_NAr - benzyne mechanism - Zeigler alkylation - Chichibabin reaction - Rosendmund Reactions - von Braun reaction - Cine substitution.	15
Unit IV	Addition Reactions: Electrophilic, nucleophilic and free radical addition to double and triple bonds- hydration, hydroxylation, Michael addition, hydroboration and epoxidation. Addition reactions to carbonyl compounds – Mannich reaction, Meerwein-Ponndorf-Verley reduction, Grignard, Claisen, Dieckmann, Stobbe, Knovenagel, Darzen, Wittig, Thorpe and Benzoin reactions.	15
	Elimination Reactions: E1, E2, E1cB - stereochemistry of elimination, Hofmann and	
Unit V	Saytzeff's rules - elimination versus substitution - pyrolytic <i>cis</i> elimination - Chugaev reaction – dehydration of alcohols, dehydro halogenation of vicinal dihalides, Hofmann degradation, Cope elimination. Reactive Intermediates: Carbenes and nitrenes-structure, generation and reactions.	15
	Total Contact Hrs	75

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Tasks.

Text Book 23PCY102

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Finar, I.L.	Organic Chemistry 1: The Fundamental Principles	Pearson Education Ltd, Volume I, 6 th Edition.	2014
2	Jerry March	Advanced Organic Chemistry	Wiley PublicationsLtd, 4 th Edition.	2008
3	Mukherjee, S.M and Singh, S.P.	Reaction Mechanism in Organic Chemistry	New Age International Publishers, 10 th Edition.	2004
4	Ahluwalia, V.K. Rakesh K. Parashar	Organic Reaction Mechanisms	Narosa Publishing House, 4 th Edition.	2010
5	Jagadamba Singh and Yadav, L.D.S	Advanced Organic Chemistry	Pragati Prakashan Publishers, 20 th Edition.	2014

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1.	Agarwal, O.P.	Reactions and Reagents in Organic Chemistry	Goel publishing House, 49 th Edition.	2014
2.	Tewari, Vishnoi, K.S.	Text book of Organic Chemistry	Vikas Publishing House, 3 rd Edition.	2006
3.	Morrison, R.T, Boyd, R.N	Organic Chemistry	Pearson India Ltd, 7 th Edition.	2013
4.	Peter Sykes	Guide Book to Mechanism in Organic Chemistry	Pearson Education, 6 th Edition.	2014
5.	Ahluwalia, V.K.	Organic Chemistry: Fundamental Concepts	Narosa Publishing House	2013

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=T1ePwEQ4Fa0
https://www.youtube.com/watch?v=QkQUJhJYPA0
https://www.youtube.com/watch?v=hsBn-BxuN0M
https://www.youtube.com/watch?v=RtV_JxzZoss
https://www.youtube.com/watch?v=-D8tYR3LTsI
https://nptel.ac.in/courses/104/101/104101115/
https://nptel.ac.in/courses/104/103/104103110/
https://nptel.ac.in/courses/104/101/104101005/

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	-	Н	Н	Н	-	Н	Н	M	M
CO2	Н	Н	M	Н	Н	Н	Н	Н	Н	Н
CO3	M	Н	Н	Н	M	H	Н	M	Н	Н
CO4	Н	Н	M	Н	Н	M	Н	Н	M	Н
CO5	Н	-	Н	Н	Н	Н	Н	Н	Н	Н

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.K.Poonkodi	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name:
			Dr.R.Manicka Chezhian
Signature:			
Signature.	Cianatura	Cianatura	Signature:
	Signature:	Signature:	

Programme Code:	M.Sc			Programme Titl	e:	Master	of Chemistry	
	1			Physical Chemist	ry –I –	Batch:	2023 - 2025	
Course Code:		23PCY103		Group Theory and	d	G 4	т	
				Chemical Kinetic	S	Semester:	1	
Lecture Hrs./Week	4	Tutorial	1	Total Hrs/Sem	75	Credits:	5	
		ı	Co	urse Objective				
* To gain knowledge on basic and applications of group theory.								
* To learn about 1	rate and	order of the	vario	us reactions.				

^{*} To understand the concepts of catalysis, adsorption and its mechanisms.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Summarize the fundamentals of group theory and the fundamental concepts on kinetics and reaction rate.	K2
CO2	Develop knowledge on applications of group theory and various theories of chemical kinetics.	К3
CO3	Predict the IR and Raman active vibration modes for molecules and type of hybridization in nonlinear molecules based on group theory.	К3
CO4	Analyze the use of the kinetics and theories of surface chemistry.	K4
CO5	Examine hybridization scheme for orbital in simple molecules.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evalua	te

Units	Content	Hrs
Unit I	Symmetry elements and symmetry operations - identity element - centre of symmetry- reflection symmetry planes - proper and improper rotation axes of symmetry. Group definition, properties-order of group- types of groups- Abelian group, Non - abelian group, sub group, isomorphic group - similarity transformation and classes. Point group classificat ion- identification of point groups of simple molecules - group multiplication table (C _{2v} and C _{3v} point group) – Definition of matrix, square, diagonal, null, unit, row, column, symmetric matrices - Matrix multiplication (Commutative and non-Commutative) determination of inverse of a matrix, block multiplication of matrices –	

	Addition Matrix representation of symmetry operations and subtraction of matrices -	
	Matrix notations for symmetry operations of C_{2v} and C_{3v} point groups (use of vectors)	
	construction of character tables for C_{2v} and C_{3v} point groups.	
Unit II	Reducible and Irreducible representations – The Great Orthogonality Theorem and its consequences (statement only, proof not needed)- Determination of the characters for irreducible representation of C_{2v} and C_{3v} point groups – using the orthogonality theorem-direct product representation - wave function as bases for irreducible representation - spectral transition probabilities - projection operators - Huckel approximation -concept of hybridization - secular determinant - symmetry factoring of secular equations. Symmetry selection rule for IR, Raman spectra, rotational spectroscopy and Mutual Exclusion Principle - infrared spectral activity of vibrational modes in NH ₃ and H ₂ O molecules - classification of vibrational modes - application of group theory to bonding: hybridization scheme for orbital in simple molecules - AB ₄ (T _d , CH ₄), AB ₅ (D _{3h} Fe(CO) ₅) and AB ₆ (O _h [Co(NH ₃) ₆] ³⁺).	
Unit III	Chemical Kinetics-I Simultaneous reactions - opposing, parallel and consecutive reactions - theories of reaction rates - Arrhenius theory - collision theory - classical collision theory-modified collision theory - causes of weaknesses of the collision theory - absolute reaction rate or transition state theory - Statistical mechanical derivation of the rate equation - thermodynamical formulation of reaction rate, Lindeman's theory of unimolecular reactions. Kinetics in liquid solution - Salt effect - primary salt effect and secondary salt effect - significance of salt effect - effect of pressure on rates of reactions in solutions.	15
Unit IV	Chemical Kinetics-II Chain Reactions - general characteristics - Experimental methods of fast reactions - shock tubes and pulse radiolysis techniques - kinetics of decomposition of N ₂ O ₅ , H ₂ -Cl ₂ . Photochemical reactions and H ₂ -Br ₂ thermal reaction - non-stationary chain reaction - H ₂ -O ₂ reaction and explosion limits. Effect of temperature, relative permittivity, ionic strength and solvent (Grunwald-Winstein equation) on reaction rates.	15
Unit V	Surface Chemistry Basic concepts of Micelles and Reverse Micelles - Physisorption and Chemisorption — adsorption isotherm — derivation of Langmuir and Freundlich, derivation of B.E.T equation of multilayer adsorption — application of BET equation to surface area determination, derivation of Gibbs adsorption isotherm. Heterogeneous catalysis and their kinetics — chemical reactions on solid surfaces - Mechanism & Kinetics of	15
	unimolecular and bimolecular surface reactions – Langmuir –Hinshelwood, Langmuir – Ridel mechanism, ARRT of surface reactions.	

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

23PCY103

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1.	Cotton, F.A	Chemical applications of grouptheory	A Wiley Interscience Publication, 3 rd Edition.	2008
2.	Laidler. K. J	Chemical Kinetics	Pearson Education India, 3 rd Edition.	2003
3.	Gopinathan, M. S. and Ramakrishnan, V	Group Theory in Chemistry	VishalPublishers,2 nd Edition	2013
4.	Gurudeep Raj	Chemical Kinetics	Krishna Educational Publishers.	2014
5.	Bajpai, D.N.	Advanced Physical Chemistry	S. Chand Publishing Limited, revised edition	2001

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION	
1	Adamson A.M.	Physical Chemistry of Surfaces	John Willey, UK,5 th Edition	2002	
2	Raman, K.V.	Group Theory and its Applications to Chemistry	Tata McGraw Hill Publishing company Ltd,3 rd Reprint.		
3	Bhattacharya, P.K.	Group Theory and its Chemical Applications, Second Edition.	Himalaya Publishing House, 2 nd edition	2020	

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=-we7yTR7exI
https://www.youtube.com/watch?v=Av9f25sqLG0
https://www.youtube.com/watch?v=5m8ubFNFJUU
https://nptel.ac.in/courses/104/104/104104080/
https://onlinecourses.nptel.ac.in/noc21_cy16/preview
https://onlinecourses.nptel.ac.in/noc20_cy13/preview
https://onlinecourses.nptel.ac.in/noc21_cy17/preview
https://nptel.ac.in/noc/courses/noc21/SEM1/noc21-cy17/

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	M	-		- i	1	Н	Н	-	-
CO2	Н	Н	M	M	M		-	-	M	L
CO3	Н	Н	Н	Н	Н	M	L	M	M	L
CO4	Н	Н	M	M	H	L.	M	M	Н	M
CO5	Н	Н	M	M	M	L	M	L	M	-

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Mrs. K.Vimaladevi	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme code:		M.Sc		Programme Title	:	Master of Chemistry		
	Inorganic Chemistry - II		Inorganic Chemistry - II		2023-2025			
Course Code:	23PCY204			Coordination Chen	Coordination Chemistry		II	
Lecture Hrs./Week	4	Tutorial	orial 1 Total Hrs/ Sem 75		Credits:	4		
		•	(Course Objectives	•	1		
* Acquire knowledge about theories of complexes, basics of electronic spectroscopy of transition metal complexes, mode of coordination with various geometries.								
* To apply the knowledge of coordination chemistry to research and analyze the term symbols.								
* Realize the imp	ortan	ce of the in	npoi	rtant inorganic polyn	ners and th	neir application	ons.	

Course Outcomes (CO)

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Understand the various concepts of coordination chemistry and realize the importance of electronic spectroscopy and magnetic properties of coordination compounds.	K2
CO2	Gaining the knowledge on various types of inorganic reaction mechanism in different geometries.	K2
CO3	Acquiring knowledge on various types of electron transfer mechanism of metalcomplexes and their importance.	К3
CO4	Inferring various symmetries/geometries of coordination complexes and their isomerism and important applications of some inorganic polymers.	K4
CO5	Prepare some important coordination complexes as catalyst for reactions.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	,

Units	Content	Hrs
	Coordination Chemistry - I	
	Crystal field theory - splitting of d orbitals in octahedral, tetrahedral and square	
	planar symmetries - measurement of 10Dq - factors affecting 10Dq - spectrochemical	
	series - crystal field stabilisation energy for high spin and low spin complexes-	
T7 *4 T	evidences for crystal field splitting - site selections in spinels and antispinels - Jahn	15
Unit I	Teller distortions and its consequences. Molecular Orbital Theory and energy level	
	diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral,	
	square planar and tetrahedral complexes.	

	Coordination Chemistry - II						
	Term states for d ions - characteristics of d-d transitions - charge transfer spectra -						
Unit II	selection rules for electronic spectra - Orgel correlation diagrams - Sugano-Tanabe	15					
	energy level diagrams - nephelauxetic series - Racha parameter and calculation of						
	inter-electronic repulsion parameter						
	Coordination Chemistry - III						
	Stability of complexes: Factors affecting stability of complexes, Thermodynamic						
	aspects of complex formation, Stepwise and overall formation constants, Stability						
	correlations, statistical factors and chelate effect, Determination of stability constant						
Unit III	and composition of the complexes: Formation curves and Bjerrum's half method,	15					
	Potentiometric method, Spectrophotometric method, Ion exchange method,						
	olorographic method and Continuous variation method (Job's method) Magnetic						
	property of complexes: Spin-orbit coupling, effect of spin-orbit coupling on magnetic						
	moments, quenching of orbital magnetic moments.						
	Coordination Chemistry - IV						
	Inert and Labile complexes; Associative, Dissociative and SNCB mechanistic						
	pathways for substitution reactions; acid and base hydrolysis of octahedral complexes;						
Unit IV	Classification of metal ions based on the rate of water replacement reaction and their						
	correlation to Crystal Field Activation Energy; Substitution reactions in square planar						
	complexes: Trans effect, theories of trans effect and applications of trans effect in						
	synthesis of square planar compounds; Kurnakov test.						
	Coordination Chemistry - V						
	Electron Transfer reactions in octahedral complexes: Outer sphere electron transfer						
Unit V	reactions and Marcus-Hush theory; inner sphere electron transfer reactions; nature of						
	the bridging ligand in inner sphere electron transfer reactions. Photo-redox, photo-	15					
	substitution and photo-isomerisation reactions in complexes and their applications.						
	Total Contact Hrs	75					

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book 23PCY204

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATI ON
1	3 '	Inorganic Chemistry - Principles of Structure And Reactivity	Addison Wesley Publishing Co, New York, Fourth Edition	1993
2	Malik, U.K., Tuli, G.D., and Madan, R.D	Selected Topics in Inorganic Chemistry	S. Chand Publication	2010
3	Cotton. F. A And Wilkinson.G	Advanced Inorganic Chemistry	Wiley Interscience, 6 th Edition	999

Reference Books

s.no	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Lee. J.D	Concise Inorganic	Wiley India, 4 th Edition	2010
1		Chemistry		
	Gurdeep Raj	Advanced Inorganic	Geol Publishing House.	2014
2		Chemistry. 12 th Edition		2011
	R. Gopalan,	Concise Coordination	VikasPublishing house Pvt. Ltd.	2001
3	V. Ramalingam	Chemistry, 3 rd Edition		2001

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=z9CmSAV1wcY
https://www.youtube.com/watch?v=JjidYZYb_ck
https://www.youtube.com/watch?v=oCEAN6PR3Tg
https://www.youtube.com/watch?v=1V-Bu04LKM4
https://www.youtube.com/watch?v=FrdfyICk49o
https://www.youtube.com/watch?v=4pJqBEOy_OM
https://www.youtube.com/watch?v=A6NeTLwKvbk
https://www.youtube.com/watch?v=SzfQ-DBHAec
https://www.youtube.com/watch?v=A32k0JAfVC4
https://nptel.ac.in/courses/104/101/104101121/
https://nptel.ac.in/courses/104/101/104101090/
https://nptel.ac.in/courses/104/106/104106064/

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PS01	PS02
CO1	Н	-	Н	Н	Н	-	Н	Н	M	M
CO2	Н	Н	M	Н	Н	Н	Н	Н	Н	Н
CO3	M	Н	Н	Н	M	Н	Н	M	Н	Н
CO4	Н	Н	M	Н	Н	M	Н	Н	M	Н
CO5	Н	-	Н	Н	Н	Н	Н	Н	Н	Н

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.K.Poonkodi	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code:		M.Sc		Programme Title:		Master	of Chemistry
				Organic Chemistry -		Batch:	2023 - 2025
Course Code:	23PCY205			Organic Reactions and Stereochemistry		Semester:	II
Lecture Hrs./Week	4	Tutorial	1	Total Hrs/Sem 75		Credits:	5
			(Course Objective			
* To give a thorough introduction to the study of Oxidation, Reduction and alkaloids.							
* To know the concept of Organic Photochemistry.							
* To enable a con	npreh	ensive know	ledg	e on conformational S	tereoche	mistry and Pe	ricyclic reactions.

Course Outcomes

On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level
CO1	Comprehend the basic of oxidation and reduction reactions and	K2
	photochemistry.	IX2
CO2	Outline the importance of pericyclic reactions, to figure out isomerism and conformational analysis of stereochemistry and to understand the structural elucidation of alkaloids.	K2
CO3	Implement the basic values and analyze the functions of the natural product such as alkaloids.	K3
CO4	Analyze the reagents in chemical reactions, to execute photochemical and pericyclic reactions.	K4
CO5	Evaluate the stereo chemical isomerization, configuration and conformations of molecules.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	;

Units	Content	Hrs
Unit I	Oxidation, Reduction Oxidation - Chromyl chloride, ozone, DDQ, dioxiranes, lead tetraacetate, selenium dioxide, DMSO with either Ac ₂ O or oxalyl chloride, Dess-Martin reagent. Synthesis involving phase transfer catalysis (PTC), use of crown ethers, Merrifield resin, Baker's yeast, Oppanauer oxidation, Jones oxidation. Reduction - Catalytic hydrogenation - Wilkinson catalyst, dehydrogenation, reduction with LiAlH ₄ , aluminium tertiary butoxide, NaBH ₄ , NaCNBH ₃ , tributyl tin hydride, alkali metals for reduction, reductions involving hydrazines, Clemmensen and Wolffkishner reduction. DIBAL and hydroboration.	15

	Total Contact Hrs	75
Unit V	Alkaloids General methods for determination of structure of alkaloids - Structural elucidation and synthesis of morphine, reserpine, quinine, atropine, lysergic acid and nicotine.	15
Unit IV	Stereochemistry Optical isomerism – concept of chirality- concept of prochirality – axial chirality – (optical isomerism of biphenyls, allenes and spiranes) –planar chirality (optical isomerism of ansa compounds and cyclophanes) – helicity (optical isomerism of over – crowded molecules) - R, S – nomenclature of compounds having one and more than one chiral centres - enantiotopic and diastereotopic ligands & faces - stereo selective and stereo specific reactions – stereochemistry of sulfur and nitrogen compounds. Geometrical Isomerism E,Z –notation – Determination of configuration of geometrical isomers. Stereoismerism of cyclic compounds (up to six membered ring) – aldoximes & ketoximes. Conformational Analysis Configuration and conformation – Conformation of acyclic compounds –ethane, butane, cyclohexane, decalins - stability and reactivity in relation to conformation – perhydro phenanthrenes.	15
Unit III	Pericyclic reactions Conservation of molecular orbital symmetry - symmetry properties of molecular orbitals. Electrocyclic reactions - 1,3-diene and 1,3,5-triene systems, correlation diagram and FMO method, Woodward-Hoffman selection rule for electroyclic reactions -con rotatory and dis rotatory motions 4nπ and (4n+ 2)π systems. Cycloadditions reactions - correlation diagram and FMO approach, p2s + p2s, p2s + p4s (Diels-Alder reaction) systems. Woodward-Hoffman selection rule for cycloaddition reactions. Sigmatropic rearrangements - analysis of sigmatropic rearrangements by FMO method - 1,3& 1,5 sigmatropic rearrangements, other sigmatropic shifts - Cope and Claisen rearrangements, Di pi methane rearrangement, ene reaction.	15
Unit II	Organic photochemistry Laws of photochemistry - Beer-Lambert, Grothus-Draper law, Stark-Einstein law - Electronic excitation - energy transfer - quantum efficiency, Jablonski diagram - chemical actinometry - photosensitization - quenching. Photochemistry of carbonyl compounds - photoreduction - Norrish type I and type II reactions, Photoadditions Barton reaction - Patterno-Buchi reaction. Photochemistry of olefins - cis and trans isomerization - dimerization reactions - cycloaddition reactions - 1, 2 cycloadditions - photooxidation - Photo substitution reactions of benzene derivatives. Chemiluminescence and bioluminescence.	15

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

23PCY205

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS\ EDITION	YEAR OF PUBLICATION
1	Mukerjee S.M. & Singh, S.P.	Reaction Mechanism in OrganicChemistry	McMillan India Ltd, 3 rd Edition	2013
2	Ahluwalia, V.K. Rakesh K. Parashar	Organic Reaction Mechanisms	Narosa Publishing House, 4 th Edition.	2010
3	Kalsi. P.S	Stereochemistry, Conformation and Mechanism	John Wiley Sons, 3 rd edition.	1995
4	Nasipuri, M	Stereochemistry of Organic Compounds	New Age International, New Delhi, 3 rd Edition.	2007
5	Agarwal O. P	Natural Product Chemistry	Goel Publishing house, 20 th Edition	2001
6	Jagadambal Singh	Advanced Organic Chemistry	Pragati Prakashan Publishers, 20 th Edition.	2014
7	Viswanathan, B. & Aulice Scibioh, M	Photoelectrochemistry – Principles and Practices	Narosa Publishing House, New Delhi	2014
8	Finar. I.L	Organic Chemistry, Volume I & II, The Fundamental Principles	Pearson Education Ltd, 6 th Edition.	2014

Reference Books

S.NO	AUTHOR	AUTHOR TITLE OF THE BOOK PUBLISHERS \ EDITION		YEAR OF PUBLICATION
1	Depuy, C.H. & Chapman. O.S	Molecular Reactions and Photochemistry	Prentice Hall	1972
2	Eliel. E.L, Wilen. S.H	Stereochemistry of Organic Compounds	Wiley International	1994
3	Potapov, V.M. Beknazarov. A	Stereochemistry	Mir Publications, Russia	1980
4	Jerry March	Advanced Organic Chemistry	A Wiley-Interscience, 4 th Edition.	2007
5	Eliel, E.L	Stereochemistry of Carbon Compounds	McGraw Hill, New Delhi, 1 st Edition.	2013

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=uwia3_Her8s
https://www.youtube.com/watch?v=qB9V2uMaxA8
https://www.youtube.com/watch?v=Pp0LeL0SkRg
https://www.youtube.com/watch?v=J b1Y4QhhZc
https://www.youtube.com/watch?v=BBIjnB-6420
https://www.youtube.com/watch?v=JROZc-9DayM
https://www.youtube.com/watch?v=wNyijTBpOrI

Mapping

PO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	M	M	Н	Н	M	M	M	M	M	M
CO2	Н	Н	Н	Н	Н	M	M	Н	Н	Н
CO3	Н	Н	Н	Н	Н	M	M	Н	Н	M
CO4	M	Н	Н	Н	Н	Н	Н	Н	M	Н
CO5	Н	Н	Н	M	Н	M	M	Н	M	M

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.V.Prabhu	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code:	mme Code: M.Sc			Programme Title:		Master	of Chemistry	
	23PCY206			Physical Chemistry –II -		-II -	Batch:	2023 – 2025
Course Code:				Quantum Chemistry and Nano Chemistry		Semester:	II	
						Schiester.	11	
Lecture Hrs./Week	4	Tutorial	1	Total Hrs/Sem	75	Credits:	4	
Course Objective								
* To motivate the	studen	ts to compreh	end l	knowledge in quantu	m mecl	nanics.		
* To apply the quantum mechanical concept to simple molecules and experiment approximation methods.								
* To appraise the practical applications of nano material synthesis techniques.								

Course Outcomes (CO) On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level
CO1	Understand the failure of classical mechanics and formulation of quantum mechanics.	K2
CO2	Solve the Schrödinger wave equation for simple systems	K4
CO3	Comprehend the approximate methods in quantum mechanics and apply it to simple molecules	K5
CO4	To understand and analyze nano material synthetic strategy for various applications.	К3
CO5	Realize the practical applications of designing and synthesizing nano materials.	К3
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Units	Content				
	Quantum Chemistry-I				
Unit I	Success of quantum theory and the failure of classical mechanics - black body radiation, photo electric effect and Compton effect. The need for quantum mechanics- time dependent and time independent Schrodinger equation - operator concept as applied to quantum mechanics (basic ideas) - Eigen functions and Eigen values - postulates of quantum mechanics - application of Schrodinger equation to the particle in a box (1-D& 3-D Boxes) - particle in a ring & particle in spherical orientation. Harmonic oscillator and rigid rotator.	15			

	Quantum Chemistry-II	
	Central force problem - H-atom - method of separation of variables - final solution - the energy and wave function for the problem.	
	Approximation Methods: Approximate methods in quantum mechanics and need for approximation methods. Approximation methods applicable to multi electron systems - perturbation method applicable to H atom in ground state - He atom in the ground state. Variation methods applicable to H atom in ground state - He atom in the ground state. Shapes of the wave functions and Quantum numbers.	
	Quantum Chemistry-III	
Unit III	Construction of anti-symmetric wave functions- Slater determinant – LCAO-MO treatment of diatomic molecules- HMO treatment of simple and conjugated π -electron systems - ethylene, allyl, butadiene and benzene systems - charge distributions and bondorders from the coefficients of HMO. Delocalization energy-construction and use of hybrid orbitals. Determination of bond order	15
	Nano Chemistry - I	
Unit IV	Introduction- definition — types- nanoparticles, nano cluster, nano rod, nanotube (CNT) and nano wire. Properties of nano materials, Bottom up and Top down approaches - methods of preparation of nano materials — Laser ablation, chemical vapour deposition, electrodeposition, precipitation, thermolysis. Application of nanomaterials. Catalysis, environmental and biomedical (drug delivery) applications. Nano materials- Environmental hazards.	15
	Nano Chemistry - II	
 IInit V	Experimental Techniques for the characterization of nanomaterials - UV-Visible spectroscopy (UV-DRS), FT-IR spectroscopy, Instrumentation, principle and applications of scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning tunnelling microscopy (STM), ESCA, BET and Photoluminescence study.	15
	Total Contact Hrs	75

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

TEXT BOOK

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION		
1	Prasad, R. K	Quantum Chemistry	New age international(P) Limited Publishers, New Delhi, 4 th Edition	2010		
2	Chandra, A.K.	Introductory Quantum Chemistry	Tata-McGraw Hill Publication Co. Ltd., NewDelhi, 4 th Edition	2012		
3	Ira N. Levine.	Quantum Chemistry	PHI learning Pvt. Ltd, 7 th Edition	2014		
4	Puri, B.R & Sharma. L. R.	Advanced Physical Chemistry	Milestone Publishers & Distributors, 2 nd Edition	2009		
5	Atkins, P. andDe Paula, J.	Physical Chemistry	Oxford University Press, New Delhi, 9 th Edition	2012		
6	Cao.G	Nanomaterials: Synthesis	Nanomaterials: Synthesis, Properties and			
7	Pradeep.T	Nano: The Essentials in Understanding Nanoscience and Nanotechnology	York, 1st Edition	2007		
8	Köhler, M. Fritzsche, W		WILEY-VCH Verlag GmbH & Co.	2004		
9	Bhagyaraj, S.M.Oluwafemi, O.S.Kalarikkal,N Thomas,S	Synthesis of Inorganic Nanomaterials: Advances and Key Technologies	Woodhead Publishers, Elsevier	2018		

Reference Books

23PCY206

CNO	AUTHOD	TITLE OF THE	PUBLISHERS \	YEAR OF
S.NO	AUTHOR	BOOK	EDITION	PUBLICATION
1	Melvin W. Hanna.	Quantum Mechanics	Addison Wesley Longman,	1060
		in Chemistry	2 nd Edition.	1969
2	Mc Quarrie. D.A	Quantum Chemistry	University Science Books,	2008
			2 nd Edition	2008
3	Thomas Engel	Quantum Chemistry &	Pearson Education, 2 nd	2006
		Spectroscopy	Edition	2000

4	Atkins. P.W and	Molecular Quantum	Oxford University	2005
	Friedman. R.S	Mechanics	Press/4 th Edition	2003
_	Mc Quarrie, D.A.	Physical Chemistry -	Viva Books Pvt. Ltd., New	
5	and Simon, J.D.	A Molecular Approach	Delhi/ 1st South Asian	2015
			Edition	
6	Charles P. Poole, Jr.	Introduction to	Wiley India Pvt. Ltd,	
	Frank J. Owens	Nanoscience and	New Delhi/ Indian	2021
		Nanotechnology	Edition	
7	Jain P C and Monika	Engineering	Dhanpat Rai Publishing	2015
	Jain	Chemistry	Co, 16 th Edition	2013

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=LnmCsNQsR68
https://www.youtube.com/watch?v=uPvWlwOhCTo
https://www.youtube.com/watch?v=p82enyv3XA0
https://www.youtube.com/watch?v=gLesbQ8MPlU
https://www.youtube.com/watch?v=ASPuNKrCzDE
https://onlinecourses.nptel.ac.in/noc20_cy27/preview
https://onlinecourses.swayam2.ac.in/arp19_ap51/preview

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	M	Н	M		M	M	Н	Н
CO2	Н	Н	Н	L	Н		L	M	L	Н
CO3	Н	Н	Н	Н	M	M	Н	Н	Н	M
CO4	Н	Н	Н	M	Н	-	Н	M	-	-
CO5	Н	Н	Н	M	Н	M	Н	Н	Н	Н

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name:	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name:
Mrs.M.Anusuya			Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code:		M.Sc		Programme Title:		Master	of Chemistry	
	Major Elective –I: Green Chemistry, Research methodology and Cyber Security				22DCW2E1		Batch:	2023 - 2025
Course Code:			methodology and C			Semester:	II	
Lecture Hrs./Week	3	Tutorial	-	Total Hrs/Sem	45	Credits:	3	
			Co	ourse Objective				
* To stimulate stu	* To stimulate students to have in-depth knowledge in green chemistry.							
* To acquire a clear idea about various synthesis of Nanomaterials and techniques.								
* To gain knowle	* To gain knowledge about the significance of research and scientific writing.							

Course Outcomes On the completion of the course the student will be able to

To apply the principles of Cyber Security and its attack.

#	CO Statement	Knowledge Level
CO1	Understand the principles and tools of green chemistry.	K2, K3
CO2	Recollect the hazardous effect of chemicals and solvents used in laboratory.	К3
CO3	Ability to write a good research report.	K5
CO4	Get the idea about cyber security.	K3
CO5	Apply the ideas of legal and ethical issues for cybercrime and plagiarism.	K4
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	e

Units	Content	Hrs
Unit I	Green Chemistry Principles Definition, need of green chemistry, twelve basic principles of green chemistry-planning a green synthesis in a chemical laboratory- solvent-less reactions, selection of appropriate solvent, use of microwaves-fundamentals of closed-vessel heating and sonication. Atom efficient processes and atom efficiency, atom economy (with specific reaction).	9
Unit II	Greener Reactions Water as greener solvent- reactions in ionic-liquid, solvent free reaction- solid supported organic synthesis, phase transfer catalyst (PTC), use of microwaves and sonication (any four specific reactions with mechanism).	0

	Research Methodology	
Unit III	Concepts of Research - Importance of research in science, Criteria of good research, Sources of a research problem. Types of research - Basic, applied, action, experimental, diagnostic and exploratory. Primary and secondary sources-N-list-journals, plagiarism, Intellectual property rights, patent, trade mark, Copyrights, Plagiarism. Web of science, Scopus, citations-Science citation index- H – Index, I-10 Index. Scientific Writing	13
	Nature and purpose, the components of dissertation and Research paper, Writing techniques. Types of scientific publications-magazines, journals, reviews, news, letters, Structure of Scientific paper. Various reference styles.	
Unit IV	Over view of cyber security: Confidentiality, integrity and availability Threats: Malicious software (viruses, Trojans, root kits, worms, and botnets), Memory exploits (buffer overflow, heap overflow, integer overflow, format string). Cryptography- Authentication, password system- windows security.	7
Unit V	Network security: Network intrusion detection and prevention system, firewalls. Software security: Vulnerability auditing, penetration testing, sandboxing, control flow integrity – web security : user authentication- Legal and ethical issues: trade secret, hacking and intrusion, privacy, identity theft- Legal and ethical issues and Cybercrime.	7
	Total Contact Hrs	45

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book 23PCY2E1

s.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Ahluwalia. V.K.	Green Chemistry (Environmental BenignReactions)	Ane Books Pvt. Ltd	2006
2	Asim K. Das	Chemistry with Green	Arunabha Sen books and allied Pvt. Limited.	2012
3	Kothari. C.R.	Research Methodology	New Age International (P) Limited.	2011

4	Biju Dharmapalan	Scientific Research Methodology.	Narosa Publications, New Delhi	2012
5	Hans F. Ebel, Claus Bliefert	The Art of Scientific Writing	Wiley Publishing, 2 nd Edition	2005
6	Arthur. W.M. Conklin Greg White	Principles of Computer Security	McGraw-Hill Education; 4 th Edition	2016

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1		Green Chemistry – Environment Friendly Alternatives	Narora Publishing House,	2003
2	Singh, Y.K, Nath, R.	Research Methodology	APH Publishing Corporation, 1 st Edition	2005
3	Chwan- Hwa (John) Wu, J. David Irwin	Computer Networks & Cybersecurity	CRC Press	2016
4	Mike O'Leary	Cyber O	A Press Publications	2016
5	Jeff Kramer, Nicolas Burrus, Florian Editler, Matt Parker	Hacking the Kinect (Technology in Action)	Apress; 1 st Edition	2016

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

1., // , 1 / IC DCCE
https://youtu.be/ooJSgsB5fIE
https://youtu.be/iy_h0tr_CMc
https://youtu.be/E03gh1huvW4
https://www.youtube.com/watch?v=Yzfl3rtF0SM
https://www.youtube.com/watch?v=zL356VB1cDA
https://www.youtube.com/watch?v=C2pN3l2BGc4
https://www.youtube.com/watch?v=-emrdVazBN8
https://www.youtube.com/watch?v=ooJSgsB5fIE
https://nptel.ac.in/courses/118/102/118102003/
https://nptel.ac.in/courses/121/106/121106007/

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	M	Н	Н	Н	M	Н	M	M	Н	M
CO2	M	Н	M	Н	M	Н	M	M	Н	Н
CO3	Н	M	Н	M	Н	Н	Н	Н	Н	M
CO4	Н	M	Н	Н	M	Н	M	Н	M	M
CO5	Н	Н	M	M	M	Н	M	M	Н	M

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.K.Poonkodi Mrs.K.Vimaladevi Dr.V.Prabhu	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code:		M.Sc		Programme Title	Programme Title:		f Chemistry
	23PCY2E2		*Major Elective—I: Electrochemistry		Batch:	2023 - 2025	
Course Code:					Semester:	II	
Lecture Hrs./Week	Lecture Hrs./Week 3 Tutorial - Total Hrs/Sem 45		Credits:	3			
			Cours	e Objective			
* Enable the stude	ents to	understand th	ne electro	chemical principles			
* To comprehend the various electrode reactions in electrode systems.							
* To learn about different batteries and fuel cells.							

Course Outcomes (CO)

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Understand the behavior of electrolytes in terms of conductance, ionic atmosphere, interactions.	K1
CO2	Familiarize the structure of the electrical double layer of different models.	K2
CO3	Compare electrodes between current density and over potential.	К3
CO4	Discuss the mechanism of electrochemical reactions.	K4
CO5	Highlight the different types of over voltages and its applications in electroanalytical techniques.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluat	e

Units	Content	Hrs
Unit I	Ionics : Arrhenius theory -limitations, van't Hoff factor and its relation to colligative properties. Deviation from ideal behavior. Ionic activity, mean ionic activity and mean ionic activity coefficient-concept of ionic strength, Debye Huckel theory of strong electrolytes, activity coefficient of strong electrolytes Determination of activity coefficient ion solvent and ion-ion interactions. Born equation. Debye-Huckel Bjerrum model. Derivation of Debye-Huckel limiting law at appreciable concentration of electrolytes modifications and applications. Electrolytic conduction-Debye-Huckel Onsager treatment of strong	9
Unit II	electrolyte-qualitative and quantitative verification and limitations. Electrode-electrolyte interface: Interfacial phenomena -Evidences for electrical double layer, polarizable and non-polarizable interfaces, Electrocapillary phenomena - Lippmann equation electro capillary curves. Electro-kinetic phenomena electro-osmosis, electrophoresis, streaming and sedimentation potentials, colloidal and poly electrolytes. Structure of double layer: Helmholtz -Perrin, Guoy- Chapman and Stern models of electrical double layer. Zeta potential and potential at zero charge. Applications and limitations.	9

	Electrodics of Elementary Electrode Reactions: Nernst equation, polarizable and non-	
	polarizable electrodes. Rate of electro chemical reactions: Rates of simple elementary	
Unit III	reactions. Butler-Volmer equation-significance of exchange current density, net current	9
	density and symmetry factor. Low and high field approximations. Symmetry factor and	
	transfer coefficient Tafel equations and Tafel plots.	
	Electrodics of Multistep Multi Electron System: Rates of multi-step electrode reactions,	
	Butler - Volmer equation for a multi-step reaction. Rate determining step, electrode	
	polarization and depolarization. Transfer coefficients, its significance and determination,	
Unit IV	Stoichiometric number. Electro-chemical reaction mechanisms-rate expressions, order, and	9
	surface coverage. Reduction of I ³⁻ , Fe ²⁺ , and dissolution of Fe to Fe ²⁺ . Overvoltage -	
	Chemical and electro chemical, Phase, activation and concentration over potentials.	
	Evolution of oxygen and hydrogen at different pH. Pourbiax and Evan's diagrams.	
	Concentration Polarization, Batteries and Fuel cells: Modes of Transport of electro	
	active species - Diffusion, migration and hydrodynamic modes. Role of supporting	
	electrolytes. Polarography-principle and applications. Principle of square wave	
	polarography. Cyclic voltammetry- anodic and cathodic stripping voltammetry and	
Unit V	differential pulse voltammetry. Sodium and lithium-ion batteries and redox flow batteries.	9
	Mechanism of charge storage: conversion and alloying. Capacitors- mechanism of energy	
	storage, charging at constant current and constant voltage. Energy production systems: Fuel	
	Cells: classification, alkaline fuel cells, phosphoric acid fuel cells, high temperature fuel	
	cells.	
	Total Contact Hrs	45
		45

_	_			
n	ed	~~		~
М	en	ЯV	ı	v
•	Cu	ч,	, •	٦./

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book 23PCY2E2

S.No.	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	D. R. Crow	Principles and Applications of Electrochemistry	Chapman & Hall/CRC, 4 th Edition,	2014
2	J. Rajaram and J.C. Kuriakose	Kinetics and Mechanism of Chemical Transformations, Macmillan India Ltd.	New Delhi	2011
3	S. Glasstone	Electro Chemistry	Affiliated East West Press, Pvt. Ltd., New Delhi.	2008
4	B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan	Electrochemistry- Principles and Applications	S.Viswanathan Printers, Chennai	2007
5	Joseph Wang	Analytical Electrochemistry	Wiley, 2 nd Edition	2004

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	J.O.M. Bockris and A.K.N. Reddy	Modern Electrochemistry	Vol.1 and 2B, Springer, Plenum Press, New York	2008
2	J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco	Morden Electrochemistry	Vol. 2A, Springer, Plenum Press, New York	2008
3	Philip H. Rieger	Electrochemistry	2 nd Edition, Springer, New York	2010
4	L.I. Antropov	Theoretical Electrochemistry	Mir Publishers	1977
5	K.L. Kapoor	Text Book of Physical Chemistry	Volume-3, Macmillan	2001

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=mbpTol3e_cU
https://www.youtube.com/watch?v=ljQGVOUGMqg
https://www.youtube.com/watch?v=BT7fFlO9CwE
https://www.youtube.com/watch?v=7E8fh7zWHaY
https://www.youtube.com/watch?v=N6XNQ30h0mA
https://www.youtube.com/watch?v=Punzuji8_cg
https://www.youtube.com/watch?v=vnbvkZnD9Ys

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	M	Н	Н	Н	L	Н	Н	M	Н
CO2	Н	Н	Н	Н	Н	M	Н	Н	M	Н
CO3	M	Н	Н	Н	Н	M	Н	Н	Н	Н
CO4	Н	Н	Н	Н	Н	M	Н	Н	Н	Н
CO5	Н	Н	Н	M	Н	M	Н	M	M	L

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development	Controller of the Examination		
		Cell			
Name and Signature	Name and Signature	Name and Signature	Name and Signature		
Name: Dr.K.Poonkodi	Name: Dr.K.Poonkodi	Name:	Name:		
Mrs.K.Vimaladevi		Mr.K.Srinivasan	Dr.R.Manicka Chezhian		
Ciamatuma					
Signature:	Signature:	Signature:	Signature:		

Programme Code:		M.Sc		Programme Title	of Chemistry				
				Major Elective I		Batch:	2023 – 2025		
Course Code:		23PCY2E3		Advanced Polyme Materials	eric	Semester:	II		
Lecture Hrs./Week	3	Tutorial	-	Total Hrs/Sem	45	Credits:	3		
	Course Objectives								
* To choose any	* To choose any research work related to the advanced polymeric materials.								
* To gain Knowledge about polymeric composites.									
* To learn the conducting and biomedical polymers and its applications.									

Course Outcomes

On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level						
CO1	Acquire the knowledge about dendrimers, hyper-branched polymers and polymer nanocomposites.							
CO2	Recognize the importance of synthetic biomedical polymers for drug delivery and conducting polymers.							
CO3	CO3 Understand the synthetic route, structure, properties and uses of engineering plastics.							
CO4	Analyze the properties of new polymeric materials.	K4						
CO5	Synthesize the new conducting and biomedical polymers	K5						
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

Units	Content	Hrs
Unit I	Dendrimers and hyper branched polymers: Dendrimers and hyper branched polymers Properties of Dendrimers and Hyper branched Polymers and their Blends: Dendrimers and their structure, synthesis of Dendrimers, Hyper branched Polymers and their structure. Synthesis of hyper branched polymers, branching and poly dispersity, conformation, general concepts of polymer blends. Blends of Dendritic polymers with thermoplastics.	9
Unit II	Polymer nano composites: Polymer nano composites, Polyamide/clay nano composites - Synthesis, characterization and properties of Nylon6 – clay hybrid. Polystyrene/clay nano composites— Surface initiated polymerization, syndiotactic polystyrene/ clay nanocomposites, properties. Poly butylene sterephthalate (PBT) based nanocomposites, Epoxy nanocomposites on layered silicates. Polypropyelene layered silicate nano composites.	9

	properties and uses. Total Contact Hrs	45
Unit V	Engineering plastics: Engineering plastics, Acrylonitrile, butadiene, styrene(ABS), Polycarbonates(PC), Polyamides(PA), Polybutylene terephthalate (PBT), Polyethylene terephthalate (PET), Polyphenylene oxide (PPO), Polysulphone (PSU), Polyether ether ketone (PEEK). Polyimides, Poly phenylene Sulphide (PPS), Synthetic route, structure,	9
Unit IV	Conducting polymers: Conducting polymers, Correlation of chemical structure and electrical conductivity. Structure of conducting polymers, Poly(acetylene), poly(pyrrole)s, poly(thiophene)s, polyanilines, poly(p-phenylenesulphide), poly(p-phenylenevinylene)s. Different methods of synthesis of polyaniline: solution polymerization, interfacial polymerization, electrochemical synthesis, enzyme synthesis and photo induced polymerization of aniline. Applications of conducting polymers: Membranes and ion exchanger, corrosion protection, gas sensors, biosensors, electrocatalysis.	9
Unit III	Biomedical polymers: Synthesis Biomedical polymers for drug delivery Polymers as biomaterials, biomedical applications of synthetic polymers, synthetic polymers for biomedical applications, $poly(\alpha-hydroxyesters)$, $poly(lacticacid)$, $poly(anhydrides)$, $poly(phosphazenes)$, controlled drug delivery, methods of drug delivery.	9

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book 22PCY2E3

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Gabriel O. Shonaike & Suresh G. Advani	Advance Polymeric	CRC press	2003
		Materials		

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK		PUBLISHERS \ EDITION	YEAR OF PUBLICATION
	F. Scholz	Monographs in	1	Springer – Verlag,	
		Electrochemistry		Germany	
1		Conducting Polymers - A	L		2012
		New Era in	l		
		Electrochemistry			

2	Y-W Mai	Polymer Nanocomposites	Wood head Publishing Ltd	2006
3	S Bhadra	Progress in Preparation, Processing and Applications of Polyaniline	Progress in Polymer Science, 34,783 – 810	2009

Related Online Contents [MOOC, SWAYAM, NPTEL, and Websites]

https://nptel.ac.in/courses/104/105/104105124/
https://www.youtube.com/watch?v=UjMbwS0LOkU
https://www.youtube.com/watch?v=Sqz_QLAo7-c

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	M	Н	Н	M	Н	M	Н	Н
CO2	Н	M	Н	Н	Н	Н	M	Н	Н	Н
CO3	M	Н	Н	H	Н	Н	Н	Н	Н	Н
CO4	Н	M	Н	Н	-	Н	Н	-	M	L
CO5	Н	Н	Н	H /	H	M	Н	Н	L	Н

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination		
Name and Signature	Name and Signature	Name and Signature	Name and Signature		
Name: Dr.K.Poonkodi	Name:	Name: Mr.K.Srinivasan	Name:		
Mrs. M.Anusuya	Dr.K.Poonkodi		Dr.R.Manicka Chezhian		
Signature:					
	Signature:	Signature:	Signature:		

Programme Code:		M.Sc		Programme Title:	Master of Chemistry		
				*Non Major Elective		Batch:	2023 - 2025
Course Code:		23PCY2N1		Chemistry in Day to Day	Life	Semester:	II
Lecture Hrs./Week	2	Tutorial	1	Total Hrs/Sem	30	Credits:	2
			Co	urse Objective	<u> </u>		

- To understand industrial preparations and materials of application in day today life.
- To get an awareness about eco-friendly products to lead sustainable life.
- To enable the student to understand about the manufacture of commercial products.

Course Outcomes (CO) On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Remember fundamental concepts of applied chemistry	K1
CO2	Understand the drugs used in day to day life.	K2
CO3	Test the various forms of drugs, cosmetics and milk products in day to day life.	K3
CO4	Predict the knowledge about the paints and cleansing agents.	K4
CO5	Analyze the composition of fertilizers, pesticides and milk products.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Units	Content	Hrs
Unit I	Food and Medicines: Medicines - Antacid - Tranquilizers (Psychotherapeutic Drugs) - Analgesics - Antipyretics - Antimicrobials - Antibiotics - Antiseptics - Disinfectants. Chemistry in Food and Cosmetics - Artificial Sweetening Agents - Food Preservatives.	7
Unit II	Fertilizer and Pesticides: Fertilizer type- need for fertilizers- essential requirements-NPK ratio-sources of fertilizers. Effect of nitrogen, potassium and phosphorous on plant growth. Pesticides -classification of insecticides, fungicides, herbicides as organic and inorganic - general methods of application and toxicity, Identification of pesticides in food.	8

Unit III	Paints: Paints, varnish and lacquers- ingredients, characteristics and their uses. Chemistry in Colouring Matter - Classification of Dyes on the Basis of Constitution-Classification of Dyes on the Basis of Application.	5
Unit IV	Cleansing agents: Cleansing agents - importance of cleansing- Soaps - classification, manufacture, dry cleaning-properties.	5
Unit V	Milk and Milk products: Milk and Milk products-composition of Milk; Flavour and aroma of Milk; Effect of heat on Milk; pasteurization; Homogenization-Physical properties of Milk; milk products; Cream; butter; ice Cream; milk powder.	5
	Total Contact Hrs	30

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book 23PCY2N1

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Jayashree Ghosh. S	Fundamental Concepts of Applied Chemistry	Chand, Publications.	2005
2	Sharma, B.K.	Instrumental Methods of Chemical Analysis, 18th Edition.	Krishna Prakashan Media Pvt Ltd	2011

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Ronald Bailey, Herbert Clark, James Ferris, Sonja Krause, Robert Strong	Environment	Elsevier Publications, 2 nd Edition	2001
2	Jain and Jain	Engineering Chemistry.	Dhanpat Rai Publishing Company, 15 th Edition.	2013

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=kyjYsKfEz88
https://www.youtube.com/watch?v=2sHlLNzTpUU
https://www.youtube.com/watch?v=vppFkXW7Dt8
https://www.youtube.com/watch?v=e8X6RNFcMVc

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	Н	-	-	Н	Н	-	Н
CO2	Н	Н	M	M	M	-	-	-	M	Н
CO3	Н	Н	Н	M	Н	M	Н	M	M	Н
CO4	Н	M	Н	100	H	M	Н	M	-	Н
CO5	Н	M	Н	V - 6	Н	M	Н	M	-	Н

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name:	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name:
Dr. M. Velayutham			Dr.R.Manicka Chezhian
Pillai			
	Signature:	Signature:	Signature:
Signature:			Digitature.

Programme Code: M.Sc				Programme Title:			Master of Chemistry		
Course Code:			23PCY207		Inorganic Chemistry			Batch:	2023 – 2025
Course Cou	Course Code.			Practical –I			Semester:	I & II	
Lecture	I Sem			75		,			
Hrs/Week	II Sem	4	Tutorial	-	Hrs/Sem	II	60	Credits:	4
1	I	I		1	I .	l		I	

Course Objectives

- * To equip the students with analytical skills by analyzing the given inorganic salt mixture containing two common cations and two rare cations.
- * To perform systematic qualitative analysis with the strong theoretical back ground.
- * To enable the students to prepare simple complexes by using published reactions.

Course Outcomes

On the completion of the course the student will be able to

#	CO Statement	Knowledge Level
CO1	Separate common and rare cations.	К3
CO2	Analyze and report cations in a mixture.	K4
CO3	Analysis of synthesized compounds by UV Spectroscopy.	K4
CO4	Prepare and report coordination compounds.	K5
CO5	Develop skills in the synthesis of inorganic complexes.	K6

	Content	Hrs
A	Semi Micro Qualitative Analysis: Qualitative Analysis employing semi micro methods & spot tests of mixtures of common cations & ions of the following less familiar elements. Less Familiar Cations: Molybdenum, Uranium, Thorium, Tungsten, Selenium, Cerium, Titanium, Zirconium, Vanadium & Lithium. Familiar Cations: Lead, Copper, Bismuth, Cadmium, Nickel, Manganese, Zinc, Barium, Strontium, Calcium, Ammonium, Magnesium	
В	Preparation of Inorganic Complexes Any Six preparations selected from the following list: a) Hydroxylamine hydrochloride, b) Chrome alum Copper(I)Chloride,Trithiourea copper(I), c) Potassium trioxalato chromate(III),	

С	* UV Spectroscopic analysis of Synthesized compounds. Total Contact Hrs	75 +60Hrs
	Demonstration (NOT FOR ESE EXAMINATION)	
	(IV).	
	Ammonium hexachloro stannate	
	e) Tetrammine copper(II) Sulphate,	
	chromium(III)chloride,	
	cobalt(III)chloride, Chloropentammine	
	d) Potassium trioxalatoferrate(III), Hexamine	

Pedagogy: Demonstration and hands on practical

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Ramanajum V.V	Semimicro Qualitative Inorganic Analysis.	National Publishing Company	1985
2	VenkateswaranV, Veeraswamy R and Kulandaivelu A.R,	Principles of Practical Chemistry	Sultan Chand & Sons. 2 nd Edition	1997
3	Arthur I.Vogel	Macro & Semimicro Qualitative Inorganic Analysis	Orient Long man's Ltd, 1 st Edition	1968

23PCY207

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	M	Н	Н	Н	Н	Н	Н	M
CO2	Н	Н	M	Н	Н	M	Н	Н	Н	M
CO3	Н	Н	M	Н	Н	Н	Н	Н	Н	Н
CO4	Н	Н	M	Н	Н	M	Н	Н	Н	M
CO5	Н	Н	M	Н	Н	-	Н	Н	Н	M

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr. M.	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name:
Velayutham Pillai			Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code:		M.Sc		Programme Title:			Master of Chemistry		
Course Code:		23PCY208			Organic Chemistry			Batch:	2023 - 2025
Course Co	Course Coue.		231 € 1200			Practical –I			I & II
Lecture	I Sem	5			Total	I	75		_
Hrs./Week	II Sem	3	Tutorial	-	Hrs/Sem	II	45	Credits:	4
Course Objective									

- To enable the students to separate two components in an organic mixture.
- To identify the separated components by qualitative tests.
- To prepare organic compounds and identify the organic compounds from the given spectral data.
- Handle UV-Vis. spectrophotometer effectively.
- Apply different chromatographic techniques for separating organic compounds.

Course Outcomes

On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level			
CO1	Remember the analysis of organic compounds and aromatic substitution reactions.	K1			
CO2	Separate organic mixtures by solvent extraction and chromatographic techniques.	K4			
CO3	Analyze organic compounds by IR, NMR and UV visible spectra.	K4			
CO4	Develop skills in the synthesis of organic compounds.	K6			
CO5	Determine boiling point /melting point.	K5			
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

	Content	Hrs
	Analysis of two component organic mixtures.	
A	(Separation and analysis of individual compounds)	
В	Single stage Preparations and Recrystallization	
Б	1. Hydrolysis:	
	Preparation of Benzoic acid from Benzamide.	

	2. Acetylation:							
	Preparation of Acetanilide from Aniline.							
	3. Bromination: Preparation of p-Bromoacetanilide from Acetanilide.							
	4. Nitration:							
	Preparation of m-dinitrobenzene from Nitrobenzene.							
	5. Benzoylation:							
	Preparation of Benzanilide from Aniline.							
	6. Oxidation:							
	Preparation of Benzoic acid from Benzaldehyde.							
	7. Preparation of Glucose penta acetate.							
	Demonstration only General methods of separation and purification of organic compounds such as:							
C	1. Solvent extraction							
	2. Soxhlet extraction							
	3. Fractional crystallization							
	4. TLC and Column Chromatography							
	5. Melting point of synthesized compounds							
	Class work only							
D	Drawing the structures of organic molecules and reaction schemes							
	byChemDraw, Symyx Draw.							
	2. Chemsketch. Draw the structures and generate the IR and NMR							
	spectra of the substrates and products of synthesized compounds.							
	3. Identification of structural pattern of organic compounds (Flavone,							
	Isoflavone and Quinone) by taking UV spectrum (class work only).							
	Total Contact Hrs	75 +45 Hrs						

Pedagogy: Demonstration and hands on practical.

Reference Book 23PCY208

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
	Gnana prakasam	Organic Chemistry Laboratory	Ananda Book	
	andRamamurthy	Manual	Depot, Chennai.	1998
_	Vishnoi N.K	Advanced	Vikas Publishing	
2		Practical Organic Chemistry	House	2001
3	Jagmohan. R	Advanced Practical Organic Chemistry, Vol. I &II.		2002

4	Ahluwalia, V.K., and	Comprehensive Practical Organic	University Press,	2012
4	Dhingra, S	Chemistry (Qualitative Analysis)	First Edition, Hyderabad	2012
5	Dey, B.B. and Sitharaman, M.V	Laboratory Manual of Organic Chemistry	Fourth Edition, Allied Publishers, New Delhi	1992
6	Silverstein, R.M., Bassler, G.C. and Morrill, T.C	Spectroscopic Identification of Organic Compounds	Sixth Edition, Wiley India Ltd., New Delhi	2006
7	Willard, H.H., Jr. Merritt, L.L., Dean. J.A. and Jr. Settle, F.A	Instrumental Methods of Analysis	Seventh Edition, CBS Publishers & Distributors, New Delhi	2008
8	Mann. F.G, Saunders. B.C	Practical Organic Chemistry	4th Edn., Pearson Education India	2009

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	M	Н	M	M	Н	Н	Н
CO2	Н	Н	Н	M	Н	M	M	Н	Н	Н
CO3	Н	Н	Н	M	Н	M	M	Н	Н	Н
CO4	Н	Н	Н	M	Н	M	M	Н	Н	Н
CO5	Н	Н	Н	M	Н	M	M	Н	Н	Н

H –High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr. V. Prabhu	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programm	Programme Code: M.Sc						tle:	Master of Chemistry		
Course Code:		23PCY209		Physical Chemistry Practical –I			Batch:	2023 – 2025		
		251 € 1207					Semester:	I & II		
Lecture	I Sem	5			Total	Ι	75			
Hrs./Week	II Sem	3	Tutorial -		- Hrs/Sem		45	Credits:	4	
Course Objective										

- * To make the students to understand the principle and to carry out the potentiometric titrations.
- * To determine the pH and P^{Ka} values of buffers and acids.
- * To determine the molecular weight of solutes.
- * To construct the Phase diagram of two components systems.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level					
CO1	Recollect the concept of potentiometric titration.	К3					
CO2	Understand the simple eutectic system, molecular weight determination by Rast method, partition coefficient and estimation of metal ions using colorimetry.	K4					
CO3	Examine the strength of the solutions and Ka values by potentiometry.	K4					
CO4	Calculate the molecular weight of chemical compounds from K_f values by Rast micro method.	K4					
CO5	Estimate the metal ions using colorimetry.	K5					
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate						

	Content	Hrs
	Non Electrical Experiments	
A	 Simple Eutectic System- determination of unknown compositions. Determination of Critical Solution Temperature- Phenol – Water system. Determination of effect of added electrolyte on CST of Phenol- Water system Determination of the concentration of the electrolyte using CST of Phenol-Water system Determination of Molecular weight by Rast's micro method. Determination of Partition Coefficient of Iodine. 	

	Electrical Experiments -Potentiometric Titrations:	
В	Acid-Base titrations (using quinhydrone electrode)	
	7. Titration of Strong acid against Strong base	
	8. Titration of Weak acid against Strong base	
	9. Titration of mixture of (strong & weak) acids against Strong base	
	10. Determination of P ^H (acidic solutions)	
	11.Determination of P ^{Ka} of weak acid	
	Redox titrations	
	10. Titration of Ferrous Ammonium Sulphate against Potassium Permanganate	
C	11. Titration of Ferrous Ammonium Sulphate against Potassium dichromate	
	Precipitation titrations (using silver electrode)	
D	12. Titration of Potassium chloride against Silver nitrate	
	13. Titration of mixture of halides (chloride and iodide) against silver nitrate	
	Total Contact Hrs	75+45 Hrs

Pedagogy: Demonstration and hands on practical.

23PCY209

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Palit S. R and De S.K	Practical Physical Chemistry	Science Book Agency, Calcutta.	2003
2	Sharma. P.C and Agarwal	Practical Chemistry	Goel Publishing House, Meerut.	1996
3	Venkateswaran.V and Kulaindaivelu. A. R	Practical Physical Chemistry	S.Chand & Co.	1987

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	M	Н	Н	Н	Н	-	-
CO2	Н	Н	M	M	M	Н	Н	Н	M	-
CO3	Н	Н	Н	Н	Н	M	Н	Н	M	-
CO4	Н	Н	Н	Н	Н	M	M	Н	Н	-
CO5	Н	Н	M	Н	M	M	M	Н	M	-

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Mrs. K. Vimaladevi	Name: Dr.K.Poonkodi	Name: Mr. K. Srinivasan	Name: Dr. R. Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Course Code: 23PCY310 Natural Products and Organic Reagents Semester: III	Programme Code:		M.Sc		Programme Title:	Master of Chemistry		
Organic Reagents Semester: III		23PCY310			•	Batch:	2023 – 2025	
Lecture Hrs./Week 4 Tutorial 4 Total Hrs/Sem 75 Credits: 5	Course Code:					Semester:	III	
	Lecture Hrs./Week	4	Tutorial	4	Total Hrs/Sem	75	Credits:	5

Course Objective

- * To promote an awareness in the student about natural products and their synthesis.
- * To introduce new reagents available in organic synthesis.
- * To synthesize eco-friendly reagents and chemical pathways for the development of green chemistry.

Course Outcomes

On the successful completion of the course, students will be able to

#	CO Statement	Knowledge
		Level
CO1	Comprehend the classes of natural products and the fundamental of condensation	K2
	and molecular rearrangement reactions. Understand isolation, classification and structural elucidation of terpenoids, steroids	112
CO2	and naming reactions which includes condensation, molecular rearrangements.	K2
CO3	Implement the biosynthetic idea of proteins and polypeptides.	К3
CO4	Apply the reagents inorganic synthesis.	К3
CO5	Predict the reagents involved inorganic synthesis and evaluate the structure and synthesis of heterocyclic compounds.	K5
	K1 - Remember: K2 - Understand: K3 - Apply: K4 - Apalyze: K5 – Evaluate	

K1 - Remember; **K2** - Understand; **K3** - Apply; **K4** - Analyze; **K5** – Evaluate

Units	Content	Hrs
Unit I	Terpenoids Introduction –isolation and classification of terpenoids – isoprene rule, gem-dialkyl rule. Structural elucidation and synthesis of zingiberene, eudesmol, abeitic acid and caryophyllene, α -pinene, α -santonin, Linalool.	15
Unit II	Steroids Introduction- Structural elucidation of cholesterol (synthesis not required), ergosterol, Vitamin-D, Bile acid, testosterone and progesterone.	15

	Retrosynthetic analysis, protection and deprotection	
Unit III	An introduction to retrosynthesis – synthon – synthetic equivalent – target molecule, functional group interconversion. Retro synthetic analysis and Synthesis of simple organic molecules such as 1,2, 1,3, 1,4 and 1,5 – dicarbonyl compounds both acylic and cyclic. Formation of 3,4,5 and 6 membered cyclic compounds. Protection and deprotection of functional groups – R-OH, RCHO, R-CO-R, R-NH2 and R-COOH.	15
	Molecular rearrangements	
Unit IV	Introduction- Wagner Meerwein rearrangements, dienonephenol, Wolf, Favorski, Neber rearrangement, Baeyer- Villigerrear rangement, Stevens, Chapman, Benzidine, Fries, Ardnt Eister synthesis, Lossen and Wallac rearrangements, Curtius, Hoffmann-Lofller- Freytag, Demjanov, Von-Richter rearrangement, Sommelet-Hauser rearrangement, Smiles rearrangement.	15
	Reagents in organic synthesis	
Unit V	Gilmans reagent, lithium diisopropyl amide (LDA),trimethyl silyl iodide, Peterson's synthesis, Vilsmeier reaction. Preparations and synthetic applications of DBU(1,8-diazabicyclo[5.4.0] undecene-7-ene), DCC (dicyclohexyl carbodiimide), NBS, PCC, PDC, Wilkinson'scatalyst, Tri-n-butyl tin hydride. Heterocyclic compounds: Structure, synthesis and reactions of flavones, isoflavones, purines (adenine and guanine) and anthocyanins (cyanin and pelargonin).	15
	Total Contact Hrs	75

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book

23PCY310

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Finar. I. L	Organic Chemistry Vol. II	Longman Publishing Group	1998
2	Agarwal O. P	Natural product Chemistry	Goel Publishing house,20 th Edition.	2001

3	Gurdeep Chatwal	Organic Chemistry of Natural Products Vol I& II	Himalaya Publishing House.	2001
4	Ahluwalia. V.K. Rakesh K. Parashar	Organic Reaction Mechanisms	Narosa Publsihing House, 4 th Edition	2010
5	Stuart Warren	Designing Organic Syntheses	John Wiley and sons, 1st Edition.	1994
6	Bansal, R.K	Organic Reaction mechanism	Tata McGraw-Hill, 11 th Edition.	2006
7	Bansal, K	Heterocyclic Chemistry	New Age International, New Delhi, 5 th Edition.	2012
8	Joule, J.A. and Mills, K	Heterocyclic Chemistry	Blackwell Publishing Company, New York, 4 th Edition.	2004
9	Carruthers. W	Some Modern Methods in Organic Synthesis	Cambridge University Press, New York, 3 rd Edition.	2009
10	Khan, M.A	Chemistry of Natural products	Omega Publications, NewDelhi,1st Edition.	2011
11	Mackie, R.K., Smith, M.M., and Aitken, R.A.	Guide Book to Organic Synthesis	Longman Scientific and Technical, Singapore, 2 nd Edition.	1990

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Jerry March	Advanced organic chemistry	4 th Edition, A Wiley- Inter science	2007
2	Newman, A. A	Chemistry of Terpenes and Terpenoids	Academic press publishers	1972

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://youtu.be/sdN9LgeKLAo
https://youtu.be/diksW7rHXms
https://youtu.be/baAaUzf_psy
https://youtu.be/nm0rkDiobvc
https://youtu.be/AYB_E9gdzx0
https://youtu.be/2DyeKE5q8Go
https://youtu.be/pel8P2atSEg

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	M	M	Н	M	Н	L	L	L	Н	Н
CO2	M	M	Н	M	L	L	L	M	Н	Н
CO3	M	Н	Н	Н	Н	M	M	M	Н	M
CO4	Н	Н	Н	Н	Н	M	Н	M	M	Н
CO5	Н	Н	Н	M	Н	M	M	M	M	M

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.V.Prabhu	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code:	Programme Code: M.Sc. Programme Title:		Master	of Chemistry			
				Physical Chemistr	•	Batch:	2023 - 2025
Course Code:	2	23PCY311		Classical and Statistical Thermodynamics		Semester:	III
Lecture Hrs./Week	4	Tutorial	1	Total Hrs/Sem 75		Credits:	4
			Co	ourse Objective			
* To understand and apply the concept of fugacity, activity and chemical potential.							
* To acquire kno	wledge	on third law	of th	nermodynamics and	probabil	lity and ensem	ibles.

To gain knowledge about the distribution laws (classical and statistical) and their applications.

Course Outcome On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level
CO1	Interpret the physical significance of chemical potential.	K2
CO2	Apply probability to molecular energy levels.	К3
CO3	Apply thermodynamic concepts to evaluate the relationship between thermodynamic properties.	К3
CO4	Comprehend the quantum statistics and partition function.	K4
CO5	Evaluate statistical thermodynamics to the properties of identical indistinguishable particles like electrons.	K5

Units	Content	Hrs
Unit I	Themodynamics and Non-ideal systems Chemical potential – Fugacity- determination of fugacity of gases by graphical method, from equation of state, approximate calculation method and generalized method-variation of fugacity with temperature and pressure. Fugacity and the standard state for non-ideal gases - Fugacity coefficient, fugacity of mixture of non- ideal gases – Lewis Randal rule. Definition of activity - Standard states - activity coefficient of a gas - relation between fugacity and activity coefficient of gas - variation of activity of a gas with temperature and pressure. Activity and activity coefficient of solutions-mean activity and mean activity coefficient.	15

theorem, thermodynamic quantities at absolute zero - entropy of gases - entropy at absolute zero - entropy and probability (Boltzmann Expression) - Boltzmann - Planck equation - significance of thermodynamic probability - Entropy of expansion of ideal gas. Unit II Probability and Ensembles Theorems of permutations, combinations and probability. Thermodynamic probability to molecular systems- States of maximum thermodynamic probability of systems involving energy levels. Distinguishable and indistinguishable particles. Microstates and macro states. Ensembles - definition- micro canonical, canonical and grand canonical ensembles. Statistical Thermodynamics Maxwell - Boltzmann statistics - Fermi-Dirac statistics-Bose-Einstein statistics-thermodynamic probability- Boltzmann expression for entropy - Stirling's approximation - States of maximum thermodynamics probability - thermodynamic probabilities of systems in equilibrium - Legrangian multipliers - Maxwell - Boltzmann distribution law - Evaluation of alpha and beta in M.B. distribution law. Experimental verification of Maxwell's distribution of molecular velocities by Stern method. Limitations of Maxwell Boltzmann distribution law. Partition function - Relation between molecular partition function and canonical function - Evaluation of translational, rotational, vibrational and electronic partition function - Evaluation of E, Cv and entropy from the partition functions - The relation		Total Contact Hrs	75
theorem, thermodynamic quantities at absolute zero - entropy of gases - entropy at absolute zero - entropy and probability (Boltzmann Expression) - Boltzmann - Planck equation - significance of thermodynamic probability - Entropy of expansion of ideal gas. Unit II Probability and Ensembles Theorems of permutations, combinations and probability. Thermodynamic probability to molecular systems- States of maximum thermodynamic probability of systems involving energy levels. Distinguishable and indistinguishable particles. Microstates and macro states. Ensembles - definition- micro canonical, canonical and grand canonical ensembles. Statistical Thermodynamics Maxwell - Boltzmann statistics - Fermi-Dirac statistics-Bose-Einstein statistics-thermodynamic probability- Boltzmann expression for entropy - Stirling's approximation - States of maximum thermodynamics probability - thermodynamic probabilities of systems in equilibrium - Legrangian multipliers - Maxwell - Boltzmann distribution law - Evaluation of alpha and beta in M.B. distribution law. Experimental verification of Maxwell's distribution law and beta in M.B. distribution law. Experimental verification of Maxwell Boltzmann distribution law. Partition function Partition function - Relation between molecular partition function and canonical function - Evaluation of translational, rotational, vibrational and electronic partition function - Evaluation of E, Cv and entropy from the partition functions - The relation between partition function and thermodynamic functions (E, H, S, A, G, Cv and Cp) - Effect of molecular symmetry on rotational partition function - Ortho and para Hydrogen - Study of monoatomic and diatomic ideal gas molecule on the basis of	Unit V	Theories of conservation of mass and energy entropy production in open systems by heat, matter and current flow, force and flux concepts. Onsager theory-validity and verification- Onsager reciprocal relationships. Electro kinetic and thermo mechanical	15
theorem, thermodynamic quantities at absolute zero - entropy of gases - entropy at absolute zero - entropy and probability (Boltzmann Expression) - Boltzmann - Planck equation - significance of thermodynamic probability - Entropy of expansion of ideal gas. Unit II Probability and Ensembles Theorems of permutations, combinations and probability. Thermodynamic probability to molecular systems- States of maximum thermodynamic probability of systems involving energy levels. Distinguishable and indistinguishable particles. Microstates and macro states. Ensembles - definition- micro canonical, canonical and grand canonical ensembles. Statistical Thermodynamics Maxwell - Boltzmann statistics - Fermi-Dirac statistics-Bose-Einstein statistics-thermodynamic probability- Boltzmann expression for entropy - Stirling's approximation - States of maximum thermodynamics probability - thermodynamic probabilities of systems in equilibrium - Legrangian multipliers - Maxwell - Boltzmann distribution law - Evaluation of alpha and beta in M.B. distribution law. Experimental verification of Maxwell's distribution of molecular velocities by Stern method.	Unit IV	Partition function – Relation between molecular partition function and canonical function - Evaluation of translational, rotational, vibrational and electronic partition function – Evaluation of E, Cv and entropy from the partition functions - The relation between partition function and thermodynamic functions (E, H, S, A, G, Cv and Cp) - Effect of molecular symmetry on rotational partition function – Ortho and para Hydrogen - Study of monoatomic and diatomic ideal gas molecule on the basis of	15
theorem, thermodynamic quantities at absolute zero - entropy of gases - entropy at absolute zero - entropy and probability (Boltzmann Expression) - Boltzmann - Planck equation - significance of thermodynamic probability - Entropy of expansion of ideal gas. Unit II Probability and Ensembles Theorems of permutations, combinations and probability. Thermodynamic probability to molecular systems- States of maximum thermodynamic probability of systems involving energy levels. Distinguishable and indistinguishable particles. Microstates and macro states. Ensembles – definition- micro canonical, canonical and grand	Unit III	Maxwell - Boltzmann statistics — Fermi-Dirac statistics-Bose-Einstein statistics-thermodynamic probability- Boltzmann expression for entropy - Stirling's approximation - States of maximum thermodynamics probability - thermodynamic probabilities of systems in equilibrium - Legrangian multipliers - Maxwell - Boltzmann distribution law - Evaluation of alpha and beta in M.B. distribution law. Experimental verification of Maxwell's distribution of molecular velocities by Stern method.	15
Laws of thermodynamics - need for third law - probability and third law - Nernst heat	Unit II	Laws of thermodynamics - need for third law - probability and third law - Nernst heat theorem, thermodynamic quantities at absolute zero - entropy of gases - entropy at absolute zero - entropy and probability (Boltzmann Expression) - Boltzmann - Planck equation - significance of thermodynamic probability - Entropy of expansion of ideal gas. Probability and Ensembles Theorems of permutations, combinations and probability. Thermodynamic probability to molecular systems- States of maximum thermodynamic probability of systems involving energy levels. Distinguishable and indistinguishable particles. Microstates and macro states. Ensembles – definition- micro canonical, canonical and grand	15

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book 23PCY311

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
	Puri B.R &	Advanced Physical	Milestone Publishers &	
1	Sharma. L R	Chemistry	Distributors, 2 nd Edition	2009
		Advanced Physical	S. Chand Publishing	2017
2	Bajpai, D.N.	Chemistry	Limited., 1 st Edition	2015
			Reprint	
		Statistical	Wiley Eastern Limited,	
3	Gupta, M.C.	thermodynamics	1 st Edition	1990
		Statistical	Shoban lal & Co, 4 th	
4	Rajaram Kuriacose	thermodynamics	edition	2006
5	Samuel Glasstone	Thermodynamics for chemists	East West Press, 2 nd Edition	Reprint 2002

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Aktins. P. W	Physical Chemistry	Oxford University, 1 st Edition	1978, Reprint 2005
2	Klotz, L. M, Rosenberg R.M. Benjamin, W.A	Chemical thermodynamics	Pearson publications, 3 rd Edition	1974
3	Frederick.T. Wall	Chemical thermodynamics	W.H. Freeman & Company, 3 rd Edition	1974
4	Nash, L.K.	Chemical Thermodynamics	Addision Wesley Publishing, 2 nd Edition	1976

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.	com/watch?v=NrtZAJtEH3c&list=PLdBDmcnzLC_ZfA9evETglI7NX6N_45M77
https://www.youtube.	com/watch?v=ogw0iojLBEQ
https://www.youtube.	com/watch?v=UIVJ4JkqjaI
https://www.youtube.	com/watch?v=1yf2LBUb39g
https://www.youtube.	com/watch?v=i2OE9ljBKD8

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	M	Н	M	M	M	M	M	M	M
CO2	M	Н	M	Н	M	M	M	M	M	M
CO3	Н	M	Н	M	Н	Н	Н	Н	M	-
CO4	Н	M	Н	Н	M	Н	Н	Н	Н	M
CO5	M	Н	M	Н	M	Н	M	M	Н	Н

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr. M. Velayutham Pillai	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code:		M.Sc		Programme Title:		Master	of Chemistry	
	23PCY312		Organic Spectroscopy		Batch:	2023 – 2025		
Course Code:					Semester:	III		
Lecture Hrs./Week	4	Tutorial	1	Total Hrs/Sem	75	Credits:	5	
Course Objective								
* To enable the students to understand the principles and instrumentation of various spectroscopic techniques.								
* To acquire knowledge in the structural determination of unknown compounds using various spectroscopic methods.								
* To apply the sp	* To apply the spectral techniques in research and practical situations.							

$\label{eq:course} \textbf{Course Outcome}$ On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level
CO1	Apply and evaluate the UV/Vis spectroscopy as a qualitative and quantitative method.	K3,K5
CO2	Analyze the vibrations of molecules and identify the functional group present in it.	K4
CO3	Predict the structure of compound using 1D and 2D NMR techniques.	K5
CO4	Assess the mass to charge ratio for the sample under test and to propose the fragmentation pattern.	K5
CO5	Able to identify an unknown organic compound using the spectroscopic principles.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evalu	uate

Units	Content	Hrs
	UV Visible Spectroscopy	
Unit I	Introduction to spectroscopy - Electromagnetic spectrum- Properties of electromagnetic radiation. Electronic excitation, Theory of electronic , Franck – Condon Principle - Origin of different bands - Intensity of bands - Selection rules, Instrumentation, Correlation of electronic absorption with molecular structure, Simple chromophoric groups- auxochromes - effects of conjugation - Woodward - Fischer rules - aromatic system and systems with extended conjugation $-\lambda_{max}$ calculation of butadiene and carbonyl compounds- applications to organic compounds.	

	IR Spectroscopy and Raman spectra	
Unit II	Principles and theory of IR spectra- vibrations of polyatomic molecules - the influence of rotation on the spectrum of polyatomic molecules - factors influencing vibrational frequencies - characteristic group absorptions of organic molecules- finger print region - identification of functional groups - applications to simple organic molecules -medical diagnosis (cancer)- instrumentation- FT- IR-NIR. Raman spectra – introduction – characteristic properties of Raman lines – differences between Raman spectra and IR spectra – mechanism of Raman Effect – Intensity of Raman lines and applications of Raman spectroscopy.	15
	Mass Spectrometry	
Unit III	Theory - instrumentation - isotopic abundance - determination of molecular weights and formula, ionisation techniques (CI, FD, FAB & ESI, APCI) - nitrogen rule -metastable ions and peaks - ion fragmentation mechanisms - Retro Diels-Alder rearrangement - Mclafferty rearrangement -elimination due to ortho groups. Fragmentation associated with functional groups - benzyl alcohol, phenol, methyl phenyl ether, benzaldehyde, 2-hexanone, benzoic acid, n-propyl ethanoate, and benzamide. LC-MS and GC-MS.	15
	Nuclear Magnetic Resonance Spectroscopy - H NMR	
Unit IV	Magnetic properties of nuclei - theory of nuclear resonance - chemical shift and its measurement - factors influencing chemical shift - chemical equivalence and magnetic equivalence - solvents and NMR spectra - spin-spin coupling, spin-spin splitting systems - proton exchange reactions — hetero nuclear coupling - deuterium exchange - double resonances - chemical shift reagents - applications to organic compounds - FT NMR.	15
Unit V	13C NMR and 2D NMR Techniques Magnetic moment and natural abundance broad band decoupling. Off recononce	
Omt v	Magnetic moment and natural abundance- broad band decoupling - Off-resonance decoupling - deuterium coupling - NOE effect- peak assignments using DEPT spectrum - structural applications of simple organic molecules.	15
	2D NMR Techniques : Theory - ¹ H- ¹ H COSY, ¹ H- ¹³ C COSY: HETCOR, Proton detected HETCOR: HMQC, HMBC, NOESY. Solving problems using IR, UV, NMR and mass spectra for simple molecules.	
	Total Contact Hrs	75

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

23PCY312

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Sharma. Y. R	Elementary Organic Spectroscopy	S. Chand Publications, 4 th Edition	2012
2	Kemp, W.	Organic Spectroscopy	Replica Press Pvt. Ltd., New Delhi, 3 rd Edition	2008
3	Kalsi. P.S	Spectroscopy of Organic Compounds	New Age International (P) Ltd, 6 th Edition	2014
4	Jag Mohan	Organic Spectroscopy	Narosa Publishing House	2013
5	Banwell. C.N. McCash. E.M.	Fundamentals of molecular spectroscopy	Tata McGraw Hill Publishing Company Ltd, 4 th Edition	2016

NUS

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Thomas Engel	Quantum Chemistry & Spectroscopy	Pearson Education	2006
2	Pavia. D. L. Lampman. G.M. Kriz. G.S. and James R. Vyvyan	Spectroscopy	Brooks/Cole Publications, 5 th Edition	2011
3	Yadav. M. S	Molecular Spectroscopy	Arise Publishers & Distributors, 1 st Edition	2011
4	Kaur. H	Spectroscopy	Pragati Prakashan Publications, 10 th Edition	2015
5	Silverstein, R.M., Webster. F.X, Kiemle. D.J, Bryce. D.L	Spectrometric Identification of Organic Compounds	John Wiley Publications, 8 th Edition	2015

RELATED ONLINE CONTENTS [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/results?search_query=https%3A%2F%2Fwww.khanacademy.org%2Fscie_nce%2Forganic-

chemistry%2Fspectroscopy-jay

https://www.youtube.com/watch?time_continue=1153&v=bEzlTtaEfDU

https://onlinecourses.nptel.ac.in/noc20_cy08/preview

https://onlinecourses.nptel.ac.in/noc19_cy29/preview

https://onlinecourses.swayam2.ac.in/cec20_ma16/preview

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	M	Н	-	-	M	Н	Н
CO2	M	Н	Н	Н	Н	L	M	-	Н	Н
CO3	Н	Н	Н	Н	Н	-	-	M	Н	Н
CO4	Н	Н	Н	Н	M	-	-	L	M	Н
CO5	Н	Н	Н	Н	Н	L	L	Н	Н	Н

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination		
Name and Signature	Name and Signature	Name and Signature	Name and Signature		
Name: Mrs.M.Anusuya	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian		
Signature:	Signature:	Signature:	Signature:		

Programme Code: M.Sc Programme Title:			Master of Chemistry				
Course Code:	23PCY3E4			*Major Elective –II		Batch:	2023 – 2025
Course Coue:				Organometallic Chemistry		Semester:	III
Lecture Hrs./Week	3	Tutorial	-	Total Hrs/Sem	45	Credits:	3

Course Objective

- Learn about the development of organometallic chemistry and types of bonds in organometallic complexes
- Learn about the important organometallic complexes and their applications in various organic transformations as homogeneous/ heterogeneous catalysts
- Recognition of organometallic chemistry in Noble Prize for chemistry in 2001, 2005 and 2010
- To apply organometallic chemistry principles to research for new compound synthesis

Course Outcomes (CO)

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Understand the historical development of Organometallic chemistry and uniqueness in various bonding behaviour of organometallic compounds.	K2
CO2	Gaining the knowledge on metal carbonyl compounds, various types of insertion reactions in carbonyl chemistry and their applications	K4,K2
CO3	Organometallic alkyl, alkylidene and alkylidyne, alkene and alkyne chemistry and application of them in insertion, double carbonylation, olefin metathesis, hydrogenation, hydrosilation, oxidation and polymerisation reactions.	K4,K2
CO4	Synthesis and understand metallocenes, half-sandwich complexes, arene complexes and multidecker complexes.	K4
CO5	Inferring the importance of metallocene chemistry and the applications of metallocenes in stereospecific polymerisation of 1-alkenes and fluxional behaviour of π -electron systems and importance of organometallic chemistry in catalysis and recognition of Noble prizes 2001, 2005 and 2010.	K6
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Units	Content	Hrs				
	Organanometallic Chemistry - I					
	Definition of organometallic compound - 18 electron rule - effective atomic					
	number rule - classification of organometallic compounds - the metal carbon					
Unit I	bond types - ionic bond - sigma covalent bond - electron deficient bond -					
	delocalised bond - dative bond - metal carbonyl complexes - synthesis -					
	structure and reactions of metal carbonyls - the nature of M- CO bonding-					
	binding mode of CO and IR spectra of metal carbonyls - metal carbonyls-					

	Total Contact Hrs	45
Unit V	Organometallic compounds in homogeneous catalytic reactions - coordinative unsaturation - acid-base behaviour reaction - migration of atoms or groups from metal to ligand - insertion reaction -hydrogenation - hydroformylation and hydrosilation of alkenes - alkene polymerisation and oligomerisation - fluxional molecules.	8
Unit IV	Organanometallic Chemistry - IV Cyclopentadienyl complexes - metallocenes - synthesis of metallocenes - bonding in metallocenes- reactions of metallocenes - metallocene halides and hydrides - synthesis and structures of allyl complexes - arene complexes - synthesis - structure and reactivity of arene complexes - multidecker complexes. Organanometallic Chemistry - V	8
Unit III	Organanometallic Chemistry - III Alkene complexes - synthesis of alkene complexes by ligand substitution - by reduction and by metal atom synthesis - bonding of alkenes to transition metals - bonding in diene complexes - reactivity of alkene complexes - alkyne complexes - bonding in alkyne complexes - reactivity of alkynes - alkyne complexes in synthesis — cobalt catalysed alkyne cycloaddition	8
Unit II	metal carbonyl anions - metal carbonyl hydrides - metal carbonyl halides - metal carbonyl clusters — Wade's rule and isolobal relationship - metal nitrosyls - dinitrogen complexes - dioxygen complexes. Organanometallic Chemistry - II Metal alkyl complexes - stability and structure - synthesis by alkylation of metal halides - by oxidative addition - by nucleophilic attack on coordinated ligands - metal alkyl and 18 electron rule - reactivity of metal alkyls - M-C bond cleavage reactions - insertion of CO to M-C bonds - double carbonylation - insertions of alkenes and alkynes - insertions of metals with C-H bonds.	8

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book 23PCY3E4

S.NO	AUTHOR	TITLE OF THE	PUBLISH	YEAR OF
		Inorganic Chemistry -	Addition Wesley	1993
1	J. E. Huheey, E. A.	Principles of structure	Publishing Co,	
	Keiter and R. L.	and reactivity	NY, Fourth	
	Keiter		Edition	
	Cotton. F. A	Advanced Inorganic	Wiley Inter science	1999
2	And Wilkinson.G	Chemistry	6 th edition	1999

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \	YEAR OF	
1	Manfred Bochmann	Organometallics 1,	Oxford science publications, Oxford	1994	
2	Manfred Bochmann	Organometallics 2, Complexes with transition	Oxford science publications,	1994	

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=0V8BBxfg0Xg
https://www.youtube.com/watch?v=zYSln4OVv8E
https://www.youtube.com/watch?v=plhLipR8yYQ
https://www.youtube.com/watch?v=xzyR8Nsxloc
https://www.youtube.com/watch?v=CsdaDja4WvM
cobalt catalysed alkyne cycloaddition
https://www.youtube.com/watch?v=HvwswG8FmqE
https://www.youtube.com/watch?v=ZjDqdJKdUrk
https://www.youtube.com/watch?v=xzyR8Nsxloc

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	M	Н -	M	Н	Н	Н	-
CO2	Н	Н	Н	M	M	M	Н	L	Н	M
CO3	Н	Н	Н	Н	Н	M	Н	Н	M	-
CO4	Н	Н	Н	Н	Н	L	Н	Н	Н	-
CO5	Н	Н	Н	Н	M	M	M	M	M	-

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name:	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name:
Dr.K.Poonkodi			Dr.R.Manicka Chezhian
Mrs.K.Vimaladevi			
Signature:	Signature:	Signature:	Signature:

Programme code:		M.Sc		Programme Title:		Master of Chemistry	
				*Major Elective –II -	_	Batch:	2023 – 2025
Course Code:		23PCY3E5		Material Science		Semester:	III
Lecture Hrs./Week	3	Tutorial Hrs./Sem.	ı	Total Hrs./Sem	45	Credits:	3

Course Objective

- * Origin and the basics of crystal structure and application to structure determination.
- * The various methods available for preparation of crystalline materials and their applications.
- * The role of nanomaterials and their properties in advancing different areas of science.

Course Outcomes

On the successful completion of the course, student will be able to:

#	Course Outcomes (CO)	Knowledge Level
CO1	Understand the crystal structure, growth methods and X-ray scattering.	K1
CO2	Explain the optical, dielectric and diffusion properties of crystals.	K2
CO3	Recognize the basis of semiconductors, superconductivity materials and magnets.	K3
CO4	Study the synthesis, classification and applications of nanomaterials	K4
CO5	Learn about the importance of materials used for renewable energy conversion.	K5

Units	Content	Hrs
Unit I	Crystallography: symmetry - unit cell and Miller indices -crystal systems - Bravais lattices - point groups and space groups - X-ray diffraction-Laue equations-Bragg's law-reciprocal lattice and its application to geometrical crystallography. Crystal structure—powder and single crystal applications. Electron charge density maps, neutron diffraction-method and applications.	9

	Total Contact Hrs	45
Unit V	bulk heterojunction, polymer, perovskite based. Solar energy conversion: lamellar solids and thin films, dye-sensitized photo voltaic cells, coordination compounds anchored onto semiconductor surfaces - Ru(II) and Os(II) polypyridyl complexes. Photochemical activation and splitting of water, CO2 and N2. Manganese based photo systems for water-splitting. Complexes of Rh, Ru, Pd and Pt - photochemical generation of hydrogen from alcohol.	9
	Materials for Renewable Energy Conversion: Solar Cells: Organic, bilayer,	
Unit IV	Applications. Soft and hard magnets – Domain theory Hysteresis Loop-Applications. Magneto and gian magneto resistance. Ferro, ferri and antiferromagnetic materials-applications, magnetic parameters for recording applications. Ferro-, Piezo-, and pyro electric materials – properties and applications. Shape memory Alloys-characteristics and applications, Non-linear optics-Second Harmonic Generators, mixing of Laser wavelengths by quartz, ruby and LiNbO ₃ .	9
	Special Materials: Superconductivity: Meissner effect, Critical temperature and critical magnetic Field, Type I and II superconductors, BCS theory-Cooper pair,	
	breakdown–intrinsic, thermal, discharge, electrochemical and defect breakdown.	
	Polarisation - electronic, ionic, orientation, and space charge polarisation. Effect of temperature. dielectric constant, dielectric loss. Types of dielectric	
Unit III	luminescence – photo-, electro-, and injection luminescence, LEDs – organic, Inorganic and polymer LED materials - Applications. Dielectric studies-	-
	Properties of crystals: Optical studies - Electromagnetic spectrum (qualitative) refractive index – reflectance – transparency, translucency and opacity. Types of	9
Unit II	technique, physical and chemical vapour transport. Lorentz and polarization factor - primary and secondary extinctions.	
	state. Single crystal-Low and high temperature, solution growth- Gel and solgel. Melt growth - Bridgeman-Stockbarger, Czochralski methods. Flux	9
	gel. Crystal growth methods- nucleation— equilibrium stability and metastable	
	Crystal growth methods: Nucleation—equilibrium stability and metastable state. Single crystal —Low and high temperature, solution growth— Gel and sol-	

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book 23PCY3E5

S.NO			PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1		Principles of Materials Science	MJP Publishers	2016
2	Arumugam	Materials Science	Anuradha Publications	2007
3	Giacavazzo et. al.	Fundamentals of Crystallography	International Union of Crystallography. Oxford Science Publications	2010
4	Woolfson	An Introduction to Crystallography	Cambridge University Press	2012

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Suggested Readings M.G. Arora	Solid State Chemistry	Anmol Publications, New Delhi	2001
2	R.K. Puri and V.K. Babbar	Solid State Physics	S Chand and Company Ltd	2001
3	C. Kittel	Solid State Physics	John-Wiley and sons, NY	1966
4	H.P. Meyers	Introductory Solid State Physics	Viva Books Private Limited	1998
5	A.R. West	Solid State Chemistry and Applications	John-Wiley and sons	1987

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=I-m-FZy1oAA
https://www.youtube.com/watch?v=O9nUNkIHqT8
https://www.youtube.com/watch?v=t-m-NwJa4lY
https://www.youtube.com/watch?v=7ozWJbbFuV8
https://www.youtube.com/watch?v=xnOqahYA6NU
https://www.youtube.com/watch?v=FQzUrbKTLVU
https://www.youtube.com/watch?v=_UMmjgxKcOQ
https://www.youtube.com/watch?v=xAS4NS9RuI4

	https://nptel.ac.in/courses/118/104/118104008/
Ī	https://nptel.ac.in/courses/118/107/118107015/
ĺ	https://nptel.ac.in/courses/118/102/118102003/

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	M	Н	M	Н	Н	Н	Н
CO2	Н	Н	Н	M	M	M	Н	M	Н	Н
CO3	Н	Н	Н	Н	Н	M	Н	Н	M	Н
CO4	Н	Н	M	Н	Н	M	Н	Н	Н	Н
CO5	Н	Н	M	Н	M	M	M	M	M	Н

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name:	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name:
Mrs.K.Vimaladevi	2		Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code:	M.Sc			Programme Title:		Master of Chemistry	
Course Code:	1 23PCY3E6 L			Major Elective –II: Dye Chemistry		Batch:	2023 – 2025
Course coue.	20101020		Semester:			III	
Lecture Hrs./Week 3 Tutorial Hrs./ -		Total Hrs/Sem	45	Credits:	3		
Course Objective							

- To understand the chemistry of dyes.
- To interpret the various types of dyes, synthesis, reactions and applications.
- To recognize the pigments, cosmetics and coloring agents.

Course Outcomes

On the completion of the course the student will be able to

#	CO Statement	Knowledge Level
CO1	Learn the chemistry of dyes.	K3
CO2	Study the organic intermediate in the dye chemistry.	K4
CO3	Interpret the various types of dyes, synthesis, reactions and applications.	K5
CO4	Expertise in the pigments, cosmetics and colouring agents.	K5
CO5	Synthesize new variety of Dyes.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Eval	luate

Units	Content	Hrs
Unit I	Colour and Constitution: Relationship of colour observed to wavelength of light absorbed — Terms used in colour chemistry — chromophores, Auxochromes, Bathochromic shift, Hypsochrmic shift. Quinonoid theory and modern theories: Valence bond theory, molecular orbital theory.	9
Unit II	Chemistry of organic intermediates used in dye manufacture. Benzene, Naphathalene and Anthroquenone intermediates. Nitro dyes, Nitrosodyes, Azo dyes – principles governing azo coupling– mechanism of diazotization coupling	9

	Total Contact Hrs	45
Unit V	Pigments – Introduction - Requirements of organic pigments Types of Pigments – Applications. Fluorsecent. Brightening agents – application of dyes in other areas – Leather, paper, medicine, chemical analysis, cosmetics, colouring agents Food and Beverages	9
Unit IV	Synthesis, reactions and applications of xanthene dyes, _Cyanine dyes, acridine dyes, Sulphur dyes, Anthraquinone dyes: Anthraquinone mordant dyes, Anthroquinone acid dyes and Anthraquinone disperse dyes.	9
Unit III	Synthesis of specifics dyes and uses Orange IV, Diamond Block F, Metanil yellow, Tartrazines Direct Deep Black, Eriochrome Black T, Eriochrome Red B, Cellition Scarlet B, Congo Red, Malachite green, methylene blue, Safranine – T, Acid Magenta, Cyanin Green G, Alizarine, Benzanthrone, Indigo, Copper phthalo cyanine, Sulphur black – T.	9
	with amines, coupling with phenols. Classification according to the number of azo groups and application – Tautomerism in azo dyes.	

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

23PCY3E6

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Finar. I. L	Organic chemistry volume – I	Pearson Education India; 6th edition	2002
2	Venkataraman. K	The chemistry of synthetic dyes volume I, III, III+IV	Elsevier	1971

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Gurdeep R.Chatwal	Synthetic Dyes	Himalaya Publishing House	2009
2	Chawathe.Shah. Ra	An Introduction to synthetic drugs and dyes	Himalaya Publishing House, 14 th edition	2019
3	Sharma, B.K.	Instrumental methods of Chemical analysis, 18th Edition.	Krishna Prakashan Media p Ltd	2011

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://nptel.ac.in/courses/116/104/116104044//	
https://www.youtube.com/watch?v=2sHlLNzTpUU	
https://www.youtube.com/watch?v=71VHFKU36Jw	

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PS01	PS02
CO1	Н	Н	M	Н	Н	M	Н	M	Н	Н
CO2	Н	M	Н	Н	Н	Н	M	Н	Н	Н
CO3	M	Н	Н	H	Н	Н	Н	Н	Н	Н
CO4	Н	M	Н	Н	H	Н	M	Н	Н	Н
CO5	Н	Н	Н	M	Н	M	Н	Н	Н	Н

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.K.Poonkodi	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code: M		M.Sc		Programme Title:		Master of Chemistry	
				Inorganic Chemistry –III: Bioinorganic Chemistry		Batch:	2023 - 2025
Course Code:	23PCY413		Semester:			IV	
Lecture Hrs./Week	4	Tutorial	1	Total Hrs/ Sem	75	Credits:	5

Course Objective

- * To understand the key role of various elements in the living systems.
- * To acquire knowledge in the nature, preparation and properties metal carbonyl complexes, photochemistry of metal complexes.
- * To gain insight into the small molecules binding and transport mechanism involving metalloenzymes.
- * To know about the mechanism of binding interactions of metal complexes with bio-molecules and metal based drug action.

Course Outcomes

On the completion of the course the student will be able to

#	CO Statement	Knowledge Level
CO1	Analyze the various biological roles such as metal ion transport and storage, electron.	K4
CO2	Knowledge about the medically- metal in medicine, interaction of metal ions with biomolecules.	K2
CO3	Acquire intense knowledge about various biological roles such as metal ion transport and storage, electron- and proton transfer, O ₂ transport, hydrolysis, etc. taking place at the active site of metalloproteins.	K4
CO4	Gain knowledge about the medically-important topics such as the toxicity of metal ions, and their uses, Ru and Pt complexes in cancer therapy. This would motivate the students to pursue their research in the field of medicinal chemistry.	К3
CO5	Interpretation of bioinorganic chemistry to crack the competitive examinations.	K5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

Units	Content	Hrs
Unit I	Metals in Biology Metals and Non-metals in biological systems - Essential and trace elements - Role of different metal ions in biological systems - Sodium-Potassium pump — Calcium ATbase pump Ferritin —Hemosiderin- Transferrin- Blue copper proteins - Catecholase - Photosynthesis:Chlorophyll - Photosystem-I (PS-I) & II (PS-II) - Structure-function relationship - in-vivo and in-vitro nitrogen fixation.	15

	Structure and Function of Various Metalloenzymes	
	Metalloenzymes - Definition - Examples - Active site structure and mechanism of	
Unit II	action of- Carboxy peptidase-A and Carbonic anhydrase - Structure and function of	15
	Superoxide dismutase(SOD) (Fe-SOD, Mn-SOD, Cu-Zn couple SOD and Ni-SOD),	
	Peroxidase and catalase enzymes - Xanthine oxidase - Nitrogenase, Hydrogenase,	
	Urease.	
	Heme and Non-heme Metalloenzymes	
	Phorphyrin system - Structure and functions of Hemoglobin and Myoglobin -	
	Dioxygenbinding, transport and utilization - Hemocyanin - Hemerythrin - Synthetic	
	oxygen carriers -Vitamin B ₁₂ co-enzyme - Non-heme iron-sulphur proteins -	
Unit III	Ferridoxins - Rubredoxins - Cytochrome. a,b,c, cytochrome P450, Cytochrome C	15
	oxidase,	
	Metals in Medicine	
	Binding of metal ions and complexes to biomolecules, Types of binding - Nucleic acid	
	structures - Fundamental interactions with nucleic acids - Binding interactions of tris-	
Unit IV	phenanthroline metal complexes with DNA - Techniques to monitor binding	15
	(Electronic absorption, Fluorescence and Circular dichroic spectral techniques,	
	electrochemical behaviour, viscosity measurement and ploarimetry).	
	Chemotherapy - Radio diagnostic agents - MRI scanning - Chelating Agents (with	
	special reference to EDTA) and therapy based on in vivo chelation of radio	
	nucleotides - Dosage and toxicity.	
	Drug Discovery and Design	
	Drug discovery and design - Therapeutic index and chemotherapeutic index -	
	Structure - activity relationship - Factors governing drug design - Computer aided drug	
	design - Bleomycin - Doxorubicin - Cancer chemotherapy - Bioinorganic chemistry of	
Unit V	platinum and ruthenium anticancer drugs - Mechanism of action of cisplatin - Clinical	15
	trials and their significance - Applications of Coordination complexes in medicine.	
	Total Contact Hrs	75

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book

23PCY413

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Gurdeep Raj	Advanced Inorganic Chemistry	Geol Publishing House, 12 th Edition	2014
2	Madan. R.D	Advanced Inorganic Chemistry 84	S. Chand & company, New Delhi, 3 rd Edition	2011

3	Asim K. Das	Bio-inorganic chemistry	Books and Allied Pvt. Ltd	2015
4	Wolfgang Kaim, Brigitte schwederski, Axel klein	Bioinorganic chemistry: Inorganic Elements in the chemistry of life	Wiley, 2 nd edition	2013

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Keith F. Purcell, John. C. Kotz	Inorganic chemistry	Holt-Saunders International Editions.	1997
2	James E. Huheey	Inorganic chemistry	Pearson India Limited, 4 th Edition	Copyright 2006
3	Basolo, F. & Pearson. R.G.	Mechanisms of Inorganic Reactions: Study of Metal Complexes in Solution	Wiley Eastern Limited	1967
4	Ivano Bertini, Harry B. Gray, Stephen J.Lippard,	Bio-inorganic chemistry	VIVA books private Ltd	1998

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=6fRxAjMdMvE&list=PLRlh4Ip2fLusw2XTKlgOS9c5sGHCDlqW
https://www.youtube.com/watch?v=OgqPPFg4t6s
https://www.youtube.com/watch?v=k7Bf9p4-Kzo
https://www.youtube.com/watch?v=vnVMS_Dp0dU
https://www.youtube.com/watch?v=HkgsP0Jlc_o
https://www.youtube.com/watch?v=darVtuigUJA
https://www.youtube.com/watch?v=xzyR8Nsxloc

Mapping

PO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	M	Н	Н	M	Н	M	M	Н	L
CO2	M	Н	M	Н	M	-	L	M	M	-
CO3	Н	M	Н	Н	Н	M	Н	Н	L	-
CO4	Н	M	Н	Н	M	-	M	Н	Н	Н
CO5	M	Н	M	Н	M	-	M	M	Н	Н

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr. M. Velayutham Pillai	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Program	me Code:		M.Sc		Programme Title:		Master	of Chemistry
Course Code:		23PCY414		Instrumental Methods of		Batch:	2023 – 2025	
Course	Joue.		231 01 111		Chemical Analysis		Semester:	IV
Lecture 1	Hrs./Week	4	Tutorial	1	Total Hrs/ Sem 75		Credits:	4
	Course Objective							
*	* To study the various types of errors and their correlations.							
*	* To enable the students to attain knowledge on various chromatographic techniques and thermo analytical methods.				niques and thermo			
*	* To gain knowledge in ESR, Mossbauer spectroscopy and AAS, AES, Polarimetry and Photo Electron Spectrometry.				ry and Photo			
*	* To acquire knowledge about the configuration and confirmation of organic molecules by ORI and CD.			nolecules by ORD				

$\label{eq:Course Outcomes} \textbf{CO)}$ On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Classify thermo analytical techniques and to assess the thermal stability of a chemical compound.	K2
CO2	Comprehend the basic principle, instrumentation and applications of various chromatographic techniques, thermal analysis.	K2
CO3	Apply data analysis, various chromatographic techniques to separate the compounds, electron spin resonance and Mossbauer spectroscopy in the field of research.	К3
CO4	Evaluate the basic principle, instrumentation and applications of photoelectron spectroscopy, AAS, FES and Polarimetry.	K5
CO5	Interpret the data in chemical analysis.	K5

	Chromatographic methods		
	Solvent extraction - Methods of extraction and applications of solvent extraction.		
	Solid phase extraction - methods and applications - chromatography - HPLC -		
	outline study of instrument modules. UPLC, UHPLC and HPLC-Mass		
Unit II	spectroscopy, ion exchange chromatography and LC-MS.	15	
	Gas chromatography - basic instrumental set up - carriers, columns, detectors and		
	comparative study of TCD, FID, ECD and NPD.		
	Self-study: Thin layer chromatography and size exclusion chromatography.		
	Thermal analysis		
	Thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA),		
	Differential Scanning Calorimetry (DSC) and Thermometric titrations - basic		
	principles, Instrumentation and application. Atomic absorption spectroscopy and		
	Flame emission spectroscopy- Basic principles - Instrumentation and applications.		
Unit III	Photoelectron Spectroscopy		
	ESCA (XPS): principle, chemical shifts - description of ESCA spectrometer, X-ray		
	sources, samples, analysis, detectors and recording devices, applications.		
	Auger electron spectroscopy (AES) and UV photo electron spectroscopy (UPS) -		
	principles, applications and instrumentation.		
	Electron spin resonance		
	Theory - derivative curves -'g' values, Kramer's degeneracy - zero field splitting -		
	hyperfine splitting - isotropic and anisotropic systems - identification of free		
	radicals (CH ₃ and C ₆ H ₅ radicals, Copper - Iron complex) - applications.		
T T.	Mossbauer spectroscopy	1.5	
Unit IV	Principle and theory- Doppler Effect, Isomer shift - quadruple interactions -	15	
	magnetic interactions.		
	NQR spectroscopy		
	Theory and Principle of NQR spectroscopy-Nature of electric field gradient,		
	Energy levels and selection rules, Interaction of electric quadrupole with		

	Total Contact Hrs	75				
	Self-study: Fluorescence and phosphorescence-applications.					
	Principles and Applications of Fluorometers -Phosphorometers.					
	Molecular fluorescence and phosphorescence					
Unit V	and CD.	15				
	CD - Cotton effects - Octant rule - axial halo ketone rules - applications of ORD					
	Circular Dichroism and Optical rotatory dispersion -Basic principles of ORD an					
	Polarimetry					
	Self-study:Mossbauer spectroscopy – applications.					
	symmetric fields. Applications of NQR spectra.					
	quadrupole transitions in spherical, axially symmetric fields and not axially					
	electromagnetic radiation, nuclear orientations, the asymmetry parameter,					

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

23PCY414

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Gurdeep R. Chatwal, Anand, S.K.	Instrumental Methods of Chemical Analysis	Himalaya Publishing House.	2003
2	Sharma, B.K.	Instrumental methods of Chemical analysis.	Krishna Prakashan Media P.Ltd, 18 th Edition	2011
3	Ghosh	Introduction to Photoelectron Spectroscopy	NY, John Wiley & Sons	1983

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Skoog. D.A West. D.M & James Holler. F	Analytical Chemistry – An Introduction	Saunders College publishing	2000

	Willard, H.H,	Instrumental method of	CBS Publishers &	
2	Merrit L.L &	analysis	Distributors.	2002
	Dean, J.A		7 th Edition	2002
3	Drago, R.S	Physical methods in Inorganic chemistry	W. B. Saunders Company. 1 st Edition	1992
4	S.M. Khopkar	Basic Concepts of Analytical Chemistry	New Age International Publishers, 3 rd Edn	2008

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=OypCNBPmGBY
https://www.youtube.com/watch?v=a3F0OSOchlo
https://www.youtube.com/watch?v=XMtmSz_9umk
https://www.youtube.com/watch?v=ryo8Kd2Wgks
https://www.youtube.com/watch?v=5FczhvJrYNE
https://www.youtube.com/watch?v=DgA3-UnpSuI
https://www.youtube.com/watch?v=9zimhww51WI
https://www.youtube.com/watch?v=s7zsL9yFOsg
https://www.youtube.com/watch?v=a81cDH26f7A
https://www.youtube.com/watch?v=r55anTcoWvE
https://www.youtube.com/watch?v=X3AHbeZhKhU

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	Н	Н	M	M	Н	Н	-
CO2	Н	Н	Н	M	Н	M	-	Н	Н	-
CO3	Н	Н	Н	Н	Н	M	L	Н	Н	-
CO4	Н	Н	M	M	Н	L	M	Н	Н	-
CO5	Н	Н	Н	Н	M	M	Н	Н	Н	-

Course Designed by Head of the Department		Curriculum Development Cell	Controller of the Examination		
Name and Signature	Name and Signature	Name and Signature	Name and Signature		
Name:	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name:		
Mrs. K. Vimaladevi			Dr.R.Manicka Chezhian		
Signature:					
	Signature:	Signature:	Signature:		

Programme Code: M.Sc Pr			Programme Title:		Master of Chemistry		
Course Code:	23PCY4E7			*Major Elective –III Phytochemical Techniques and Health Chemistry		Batch:	2023 – 2025
Course Coue.						Semester:	IV
Lecture Hrs./Week	3	Tutorial Hrs./Sem.	-	Total Hrs/ Sem	45	Credits:	3

Course Objective

- * To enable post graduate students in Chemistry to gain knowledge on phytochemical techniques.
- * To enable them to be familiar with techniques of extraction, separation and purification and simple identification strategies of drugs/natural products.
- * To acquaint with health and hygiene food system along with carbohydrates and vitamins.
- * To learn the mode of mechanism for common diseases.

Course Outcomes

On the successful completion of the course, students will be able to

#	CO Statement	Knowledge Level				
CO1	Understanding the necessity and role of carbohydrates and vitamins for humans.	K2				
CO2	Remember the phytochemical techniques - extraction, separation and purification.	K5				
CO3	Implement the basic values and analyze the functions of food, foodpyramid and hygiene food system.	K5				
CO4	Evaluate the mechanism for biological function of carbohydrates and vitamins.	K4				
CO5	Analyze the mechanism and causes of common diseases.	K5				
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

Units Content	Hrs
---------------	-----

	Extraction strategies of drugs/natural products					
	Extraction Techniques - Cold and hot extraction methods - liquid-liquid					
Unit I	extraction techniques - liquid-carbon dioxide extraction - concentration and					
	evaporation techniques – lyophilisation - principles and technique of simple					
	distillation - distillation under reduced pressure - fractional distillation - steam					
	distillation - rotary evaporation and centrifugation.					
	Separation Techniques of drugs/natural products					
Unit II	Separation Techniques – Simple crystallization - experimental aspects – solvents					
Umt II	for crystallization - Special methods - Flavanoids - pigment extraction - GC-MS	9				
	- LC-MS- identification of phytochemicals by NIST Library.					
	Purification Techniques of drugs/natural products					
	Purification Techniques - Preliminary methods of identification of extracts -					
	colour tests – TLC and fluorescent characteristics, proximate methods. Theory of					
Unit III	melting and freezing - melting point and vapour pressure - in vitro biological	10				
	assays- antibacterial, antifungal, antioxidant and anticancer activities.					
	Health:					
	Definition: - Food - Food Pyramid, Health, Hygiene, mal, under and over					
Unit IV	nutrition - their causes and remedies, sanitation. Carbohydrates: Classification,	0				
	biological functions. Vitamins: Classification, biological functions.	8				
	Common Diseases:					
	Toxicants in food cancer, types and causes, common diseases- jaundice, vomiting,					
Unit V	fever, rickets, scurvy, beriberi, pellagra, gout, goiter, diabetes, anemia, night	8				
	blindness, ulcer - their causes.					
	Total Contact Hrs	45				

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

23PCY4E7

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Harborne, J. B.	Phytochemical Methods-A Guide to Modern Techniques of Plant Analysis, 3 rd Edition.	Springer Publications.	2008
2	Ahluwalia & Madhu Chopra. V.K	Medicinal Chemistry	Ane Books India	2008
3	Ashutosh kar	Medicinal Chemistry, 5 th Edition	New Age International Publishers	2010
4	Jayashree Ghosh	A Textbook of Pharmaceutical Chemistry	S. Chand and Co. Ltd.	1999
5	Alex V Ramani	Food Chemistry	MJP Publishers, Chennai.	2009
6	Satake M and MidoY	Chemistry for the Health Science	Discovery Publishing House, New Delhi.	2003

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	LE OF THE BOOK PUBLISHERS \ EDITION	
1		An Introduction to	Oxford Publishers.	
1	Graham L. Patrick	Medicinal Chemistry,		2009
	Patrick	4 th Indian Edition.		
	Krishnaswamy.	Chemistry of Natural	A Unified Approach	2010
2	N. R	Products, 2 nd Edition.	Unified Press.	2010
	Krishnaswamy.	Chemistry of Natural	University Press India	
3	N. R	Products A Laboratory	Pvt. Ltd.	2003
		Handbook, 1 st Edition.		

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=jcgGjSLBA4Q
https://www.youtube.com/watch?v=lIlkq5RW2L0
https://www.youtube.com/watch?v=9KX0dWPxgYM
https://www.youtube.com/watch?v=krIgKr3IC7s
https://www.youtube.com/watch?v=fuNmvM5BvDM

Mapping

PO /PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	M	M	Н	M	Н	M	Н	Н	M	M
CO2	Н	M	Н	M	Н	M	M	M	M	Н
CO3	Н	M	Н	M	Н	Н	_ Н	M	M	Н
CO4	Н	Н	M	Н	M	M	M	M	M	Н
CO5	Н	Н	Н	Н	Н	Н	Н	Н	M	Н

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name:	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name:
Dr.K.Poonkodi			Dr.R.Manicka Chezhian
Dr. V. Prabhu			
Signature:	Signature:	Signature:	Signature:

Programme Code:	ogramme Code: M.Sc Programme Title:		Master	of Chemistry				
C. C. L.				Major Elective III		Batch:	2023 – 2025	
Course Code: 23PCY4E8 —Computational Chemistry		<u> </u>		Semester:	IV			
Lecture Hrs./Week	3	Tutorial	-	Total Hrs/Sem 45		Credits:	3	
			Cou	rse Objectives				
* To draw chemical structures by Chemdraw and graphs by Origin.								
* To gain knowledge about various computational tools and methods.								
* To learn Gauss								

Course Outcome

On the successful completion of the course, students will be able to

	Level
Know the available free databases like MOL, SMILES.	K2
Draw the chemical structure and graphs using Chemdraw and Origin.	K3
Gain the theoretical knowledge about Slater and Gaussian functions.	К3
Evaluate the molecular mechanics, abinitio, semi empirical and DFT studies.	K5
Calculate the optimization studies for various molecules.	K5
	Draw the chemical structure and graphs using Chemdraw and Origin. Gain the theoretical knowledge about Slater and Gaussian functions. Evaluate the molecular mechanics, <i>abinitio</i> , semi empirical and DFT studies.

Units	Content	Hrs
Unit I	Representation of Chemical Compounds: 1D, 2D, 3D SMILES, InChI, Fingerprints (Daylight), Matrices, Connection Tables, mol & sdf files, Markush structures, Rotatable bonds and conformers, Molecular surfaces. Representation of Reactions: SMARTS, SMIRKS, Matrices. Searching chemical structures: Exact (Canonicalizing SMILES: Morgan, CANGEN), Clustering small molecules: Hierarchical and non-hierarchical methods. 3D pharmacophore based searching: Common Pharmacophore features, building hypotheses and searching databases. Chemical Databases: CSD, Pubchem, other relevant databases. Information content and applications. Data mining.	8

	Chemdraw Software							
Unit II	dot structure - norbornane – center carbonyl oxygens – double bonds with a short line inside the ring – degree symbol in a caption.							
	Origin Software							
	Origin software and its applications - graphing - data exploration - exploratory							
Unit III	analysis - curve and surface fitting - peak analysis - statistics - signal processing -	5						
	mathematics - data processing - importing and exporting presentation - batch							
	processing - project and data management - programming and connectivity.							
	Computational Chemistry							
	Introduction: computational chemistry as a tool and its scope. Potential energy							
	surface: stationary point, transition state or saddle point, local and global minima.							
	Molecular mechanics methods: Force fields-bond stretching, angle bending,							
	torsional terms, non-bonded interactions, electrostatic interactions. Important							
	features of commonly used force fields like MM3, MMFF, AMBER, ADMET and							
	CHARMM. Ab initio methods: A review of Hartee-Fock method. Basis set							
Unit IV	approximation.	18						
	General Introduction to Semi Empirical Methods: Basic principles and							
	terminology. Introduction to Density Functional Theory (DFT) methods:							
	Hohenberg-Kohn theorems. Kohn-Sham orbitals. Exchange correlation functional.							
	Local density approximation. Generalized gradient approximation. Hybrid							
	functionals (only the basic principles and terms need to be introduced). Model							
	Chemistry-notation, effect on calculation time (cost). Comparison of molecular							
	mechanics, ab initio, semi empirical and DFT methods.							
	Computational Chemistry Calculations Molecular geometry input- Cartesian coordinates and internal coordinates, Z-							
	matrix. Z-matrix of: single atom, diatomic molecule, non-linear triatomic							
Unit V	molecule, linear triatomic molecule, polyatomic molecules like ammonia,	9						
	methane, ethane and butane. General format of GAMESS / Firefly input file.							
	GAMESS / Firefly key word for: basis set selection, method selection, charge,							
	multiplicity, single point energy calculation, geometry optimization, constrained							
	multiplicity, single point energy calculation, geometry optimization, constrained optimization and frequency calculation.							

Softwares

Molecular Mechanics:

- 1. **Argus lab** available from www.arguslab.com/
- 2. **Tinker** available from www.dasher.wustl.edu/ffe/ *Ab initio*, semi empirical and DFT:
- 1. **Firefly / PC GAMESS** available from http://classic.chem.msu.su/gran/gamess/
- 2. **WINGAMESS** available from http://www.msg.ameslab.gov/gamess/Graphical User Interface (GUI):
- 1. **Gabedit** available from http://gabedit.sourceforge.net/
- 2. **wxMacMolPlt** available from http://www.scl.ameslab.gov/MacMolPlt/
- 3. **Avogadro** from http://avogadro.openmolecules.net/wiki/Get_Avogadro

Pedagogy

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

23PCY4E8

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Lewars E.G	Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics	Springer, 2 nd Edition	2011
2	Jensen J.H	Molecular Modelling Basics	CRC Press	2010
3	Leach A.	Molecular Modelling: Principles and Applications	Longman, 2nd Edition	2001
4	Jr. Fackler J.P. Falvello L.R. (Eds.)	Techniques in Inorganic Chemistry: Chapter-4	CRC Press	2011
5	Ramachandran K.I. Deepa G, Namboori K	Computational Chemistry and Molecular Modelling: Principles and Applications	Springer	2008

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Hinchliffe A.	Molecular Modelling for Beginners	John Wiley & Sons, 2 nd Edition	2008
2	Cramer C.J.	Essentials of Computational Chemistry: Theories and Models	John Wiley & Sons, 2 nd Edition	2004
3	Young D.C.	Computational Chemistry: A Practical Guide for Applying Techniques to Real-World	John Wiley & Sons	2001
		Problems		

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=c0y5KJXH6zw	
https://www.youtube.com/watch?v=c0y5KJXH6zw	
http://www.digimat.in/nptel/courses/video/1041010	95/L12.html
https://youtu.be/zVlZxHKP1e0	I I HAZI
https://youtu.be/nKYrzrwaRmc	424 SES
https://youtu.be/HCpjAViYbAI	S 1

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	M	Н	Н	M	Н	M	Н
CO2	Н	Н	Н	Н	Н	Н	M	M	Н	Н
CO3	Н	Н	Н	M	-	Н	Н	M	M	M
CO4	Н	M	M	Н	-	M	-	M	M	M
CO5	Н	Н	Н	Н	Н	Н	Н	Н	M	Н

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.K.Poonkodi	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code:	Programme Code: M.Sc Programme Title:				Master of Chemistry		
Course Code:	23PCY4E9		*Major Elective –III		Batch:	2023 - 2025	
Course Coue:		201 0 1 .2		Green Chemistry		Semester:	IV
Lecture Hrs./Week	3	Tutorial	-	Total Hrs/Sem	45	Credits:	3
			Cou	rse Objective			
* To understand	he basi	c principles a	nd imp	portance of green ch	emistry fo	r industrial ap	plications.
* To acquire knowledge about the microwave and ultra sound assisted synthesis.							
* To understand the concept of phase-transfer catalysis.							
* To gain knowledge about ionic liquids, Crown ethers and their applications.							

${\bf Course\ Outcomes\ (CO)}$ On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Define green chemistry and explain basic principles.	K2
CO2	Discuss and appraise green reagents, microwave and ultrasound assisted Synthesis.	K2
CO3	Analyse the synthetic applications and advantages of ionic liquids.	K4
CO4	Appraise the advantages and the applications of phase transfer catalyst in organic synthesis.	K5
CO5	Propose Crown ethers for various reactions.	K5
K	1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	2

Units	Content	Hrs
Unit I	Green Chemistry: Definition, need for green chemistry, basic principles, planning a green synthesis in the laboratory- atom efficiency process & atom economy- rearrangement, addition, substitution, elimination. Synthesis involving basic principles of green chemistry – synthesis of styrene, adipic acid. Green chemistry in day-today life - dry cleaning of clothes, versatile bleaching agents.	9
Unit II	Green Reagents: Dimethyl carbamate, polymer supported reagents, green catalysts - acidic, basic, oxidation and polymer supported catalysts.	9

	Microwave Induced Green Synthesis:	
	Introduction- microwave assisted reactions in water - Hoffmann elimination,	
	hydrolysis, oxidation, inorganic solvents- esterification, chalcone synthesis,	
	Diel's Alder reaction, decarboxylation and Fries rearrangement.	
	Ultrasound Assisted Green Synthesis:	
	Introduction- esterification, saponification, oxidation, reduction, hydroboration,	
	coupling reaction, Diels Alder reaction, Cannizaro reaction, Strecker synthesis,	
Unit III	Reformatsky reactions.	9
	Ionic Liquids:	
	Introduction, applications in organic synthesis - Diels Alder reaction, advantages	
	& disadvantages of ionic liquids.	
	Phase Transfer Catalysts:	
	Introduction, definition, mechanism of phase transfer catalysed reaction, types	
Unit IV	and advantages of phase transfer catalysts, types of phase transfer catalysed	9
	reactions, preparation of phase transfer catalysts, applications of phase transfer	
	catalysis in organic synthesis- alcohols from alkyl halides and addition to olefins.	
	Crown ethers: Introduction, nomenclature, special features, nature of donor site,	
Unit V	general synthesis of Crown ethers -synthesis of [12] Crown-4, [18] Crown-6 and	9
Omt v	cryptates. Synthetic applications – esterification, saponification and KMnO4	
	oxidation.	
	Total Contact Hrs	45

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book

23PCY4E9

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Ahluwalia V. K.	Environmentally Benign Reactions	Ane Books Pvt Ltd, 2 nd Edition.	2012
2	Ahluwalia V. K. Kidwai M.	New Trends in Green Chemistry	Anamaya Publishers, Reprint	2012

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Rashmi Sanghi, Srivastava M. M.	Green Chemistry: Environment Friendly Alternatives	Narosa Publishing House, Reprint 4 th Edition.	2012

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=E2ohFKSYhg0
https://www.youtube.com/watch?v=7VHII7Sk7NY
https://www.youtube.com/watch?v=wjFc_Tj20oA
https://www.youtube.com/watch?v=5mBv_bJ7v8Q
https://www.youtube.com/watch?v=3oIQGJ4xdmg

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	M	H	M	Н	Н	Н	Н
CO2	Н	Н	Н	M	M	M	Н	L	Н	M
CO3	Н	Н	Н	Н	-	M	Н	Н	M	Н
CO4	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
CO5	Н	Н	Н	Н	-	M	M	M	M	M

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr. M.	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name:
Velayutham Pillai			Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme Code:			M.Sc		Programme Title:			Master of Chemistry	
Course Code:		23PCY415		Inorganic Chemistry			Inorganic Chemistry Batch:		
Course co	ac.	251 € 1 415		Practica	Practical –II			III & IV	
Lecture Hrs./Week	III Sem	4	Tutorial		Total Hrs/			Credits:	4
	IV Sem	5	5		Sem	IV	75		
				Cou	rse Objec	tive			
* To a	* To analyse quantitatively the metal ions such as Cu, Ni, Fe, Zn, Ca and Ba in a mixture.								
* To estimate quantitatively Magnesium, Calcium and Zinc by complexometry.									
* To separate the components in ink and flowers by Chromatography.									

Course Outcomes On the completion of the course the student will be able to

#	CO Outcomes	Knowledge Level				
CO1	Separate and estimate the metal ions in a mixture.	K5				
CO2	Estimate the metal ions in complexes.	K4				
CO3	Separate the components in natural and commercial products.	K4				
CO4	Estimation of various inorganic ions.	K5				
CO5	Distinguish the chromatographic techniques.	K4				
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

Units	Content
A	Titrimetry Complexometric titrations using EDTA - Estimations of Magnesium, Calcium & Zinc.
В	Gravimetric Determination of Metal Ions in Mixture 1. Determination of Copper & Nickel 2. Determination of Iron & Nickel 3. Determination of Copper & Zinc 4. Determination of Calcium & Barium 5. Determination of Copper & Iron

С	Colorimetric Estimations (using photoelectric colorimeter) –(Not for ESE) Estimation of Copper, Iron, Nickel, Manganese and Chromium					
	Total Contact Hrs	75 + 60 Hrs				

Pedagogy: Demonstration and hands-on experience

Reference Books

23PCY415

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Vogel A.I.	A Text Book of Quantitative Inorganic Analysis	ELBS & Longmann, Green & Co. Ltd., 9 th Edition.	2011
2	Venkateswaran, V. Veeraswamy. R and Kulandaivelu, A.R.	Principles of Practical Chemistry	Sultan Chand & Sons, 2 nd Edition.	1997
3	Giri S, Bajpai D.N. and Panday O.P.	Practical Chemistry Vol. I & II	S.Chand & Co	1997
4	Bassart J. Dennay R.C. Jeffery G.H. and Mendham	Vogel's text Book of qualitative Inorganic Analysis	The ELBS & Longman, 4 th Edition.	2004

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	M	Н	Н	M	-	M	M	Н	M
CO2	Н	Н	Н	M	Н	-	M	M	Н	M
CO3	Н	Н	Н	Н	Н	-	Н	M	Н	Н

Course Designed by	Head of the	Curriculum Development	Controller of the
	Department	Cell	Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name:	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name:
Mrs.M.Anusuya			Dr.R.Manicka Chezhian
-			
Signature:	Signature:	Signature:	Signature:

Programme Code:		M.Sc		Programme Title:			Master of Chemistry		
Course Code:		23PCY416			Organic Chemistry Practical –II			Batch:	2023 – 2025
								Semester:	III & IV
Lecture	III Sem	4	TD 4 1 1		Total	Ш	60	G 114	4
Hrs./Week	IV Sem	5	Tutorial	-	Hrs/ Sem	IV	75	Credits:	4
				Cou	ırse Objec	tive			
* To estimate organic compounds quantitatively.									
* To learn and practice the methods of preparation of some organic compounds.									

Course Outcomes

On the completion of the student will be able to

To understand some chromatographic techniques.

#	Course Outcomes	Knowledge Level				
CO1	Remember and practice aromatic substitution reactions and the basic principles of various chromatographic techniques.	K2, K4				
CO2	Understand and evaluate the estimation of phenol, aniline, ketone and glucose.	K4				
CO3	Estimate certain natural products and separate the compounds using chromatographic technique.	K5				
CO4	Test the different types of chemical constituents in plant extracts.	K4				
CO5	Furnish the pupil to estimate the adulteration level in the oil.	K4				
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

Units	Content
	Quantitative Estimations:
	1. Estimation of phenol, aniline, ethyl methyl ketone, Glucose (Iodimetry method and
\mathbf{A}	Bertrand's method).
	2. Citric acid or ascorbic acid from a tablet or from a natural source.
	Two Stage Preparations:
В	1. Benzanilide from benzophenone.
	2. Acetyl salicylic acid from methyl salicylate.

	8. Curcumin from Curcuma longa.9. Nicotine from tobacco extract.							
C	7. Caffeine from tea.							
C								
	6. Lactose from milk.							
	Extraction: (Not for ESE examination)							
	5. Preparation of <i>p</i> -bromo acetanilide from aniline.							
	1	4. Preparation of <i>p</i> - nitroaniline from acetanilide.						
	3. Preparation of <i>m</i> - nitrobenzoic acid from methyl benzoate.							

Pedagogy: Demonstration and hands on Experience

Reference Books 23PCY416

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
	Gnanprakasam and	Organic Chemistry	Ananda Book Depot,	
1	Ramamurthy	Laboratory Manual	Chennai.	2000
		Elementary Practical	Pearson	
2	Arthur I. Vogel	Organic Chemistry	Education,	2011
		(Part-2) Qualitative	2 nd	
		Organic Analysis	Edition.	

Mapping

PO/PSO				6/30	lile acadity	173				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
<u>co</u>										
cot	Н	Н	Н	Н	Н	Н	M	Н	Н	Н
CO2	Н	M	Н	Н	M	Н	M	Н	Н	Н
CO3	M	M	Н	Н	L	-	-	-	Н	Н
CO4	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO5	M	M	Н	Н	L	-	M	-	Н	Н

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr. M. Velayutham Pillai	Name: Dr.K.Poonkodi	Name: Mr .K. Srinivasan	Name: Dr. R. Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme code:			M.Sc	Programme Title:			Master of Chemistry		
Course Code:		23PCY417		Physical Chemistry			Batch:	2023-2025	
				Practical –II			Semester	III & IV	
Lecture	III Sem	4	Tutorial:	-	Total	III	60	Credits:	4
Hrs/Week:	IV Sem	5			Hrs/Sem:	IV	75		

Course Objective

- * To equip the future chemist with the knowledge of electrical conductance measurement, kinetics, UV visible spectrometer and conductometric titrations.
- * To learn maintain the record observations on conductometric titrations and chemical kinetics and ability to use various instruments.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level
CO1	Acquire knowledge about conductometric titration, fundamentals of adsorption, metal ligand ratio and the acid hydrolysis of ester.	K2
CO2	Understand various laws of electrochemistry and applications of electrical conductance measurements and the applications of chemical kinetics.	К3
CO3	Determine the cell constant and verify the Debye-Huckel Onsager equation and Kohlrausch's law.	K5
CO4	Determine the relative strength of acids and rate of reaction.	K5
CO5	Estimate the amount of ions condutometrically and evaluate the amount of oxalic acid adsorbed using charcoal as adsorbent.	K6
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evalua	te

	Content	Hrs
	Electrical Conductance Measurements:	
	Verification of Debye-Huckel Onsager equation	
	2. Ostwald's dilution law	
	3. Verification of Kohlrausch's law	
A	4. Determination of Solubility Product of sparingly soluble salt	
	Conductometric Titrations: Acid-Base Titrations	
_	5. Strong Base Vs Weak Acid, Strong Acid Vs Strong Base	
В	6. Strong Base Vs Mixture of (weak and strong) Acids	
	7. Determination of <i>pH</i> of Buffer	
	Precipitation titrations	
C	8. AgNO ₃ Vs mixture of halides (KCl & KI)	
C	9. BaCl ₂ Vs MgSO ₄	

D	Chemical Kinetics 10. Acid hydrolysis of an ester - Relative strength of acids 11. Reaction kinetics of KI and K ₂ S ₂ O ₈ 12. Iodination of acetone	
E	Adsorption 13. Adsorption of oxalic acid on charcoal 14. Study of adsorption of acetic acid on activated carbon	
	Total Contact Hrs	75+60 Hrs

Pedagogy: Demonstration and hands on practicals

Reference Books 23PCY417

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Palit S.R. and De S.K.	Practical Physical Chemistry	Science Book Agency, Calcutta	2003
2	Sharma P.C. and Agarwal	Practical Chemistry	Goel Publishing House, Meerut.	1998
3	Venkateswaran and Kulaindaivelu	Practical Physical Chemistry	S. Chand & Co.	2005
4	Sundaram S and Raghavan K	Practical Chemistry.	S. Viswanathan Co.	1996
5	Yadav J. B	Advanced Practical Physical Chemistry	Goel Publishing House	2001
6	Gurthu J. N. Kapoor R	Advanced Experimental Chemistry	S. Chand and Co.	1987

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO2	Н	M	Н	Н	M	Н	Н	Н	Н	M
CO3	Н	Н	M	Н	Н	M	Н	M	M	Н
CO4	M	Н	Н	M	Н	Н	Н	Н	Н	Н
CO5	Н	Н	M	Н	Н	M	ı	-	M	Н

Course Designed by Head of the Department		Curriculum Development Cell	Controller of the Examination		
Name and Signature	Name and Signature	Name and Signature	Name and Signature		
Name: Dr.K.Poonkodi	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian		
Signature:	Signature:	Signature:	Signature:		

Programme code:		M.Sc		Programme Title:		Master of Chemistry		
						Batch	2023-2025	
Course Code:		23PCY4P1		Project Work & Viva-Voce		Semester	IV	
Lecture Hrs/Week:	2	Tutorial	-	Total Hrs/Sem 30		Credits:	5	

Course Objective

- * Make the students to understand the importance of experimental analysis, scientific approach in solving problems related to the environment and society.
- * Educate and train the students to write scientific papers.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

#	Course Outcomes (CO)	Knowledge Level				
CO1	Apply the various preliminary skills in laboratory.	K3				
CO2	Analyze the various sources of literature review.	K4				
CO3	Evaluate the various techniques from the previous studies.	K5				
CO4	Apply the suitable parameters in the project work.	K5				
CO5	Synthesis the various organic, nano and co-ordination compounds	K6				
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

Individual Project and Viva Voce

- Each faculty will be allotted 4/5 students.
- The topic/area of work will be finalized at the end of third semester, allowing scope for the students to gather relevant literature during the vacation.
- The research work can be carried out in the college or at any other organization approved by the College.
- Viva Voce/Power point presentation will be conducted by a panel comprising of HOD, internal / external examiners.

Research Areas

Synthetic Organic Chemistry, Coordination Chemistry, Phytochemistry, Surface Chemistry and Nanochemistry, etc.

Methodology

Each project should contain Introduction, Review of Literature, Materials and Methods, Results and Discussions – evidences in the form of figures, tables and photographs, Summary and Bibliography.

Evaluation - Total - 100 Marks (Internal – 25 marks, External – 75 marks) Internal Total – 25 marks

Review		Marks
I	Selection of the field of study, Topic & Literature collection	
II	Research Design and Data Collection	
III	Analysis & Conclusion, Preparation of rough draft	
IV	Paper Presentation in National / InternationalConference (Or) Paper Publication in UGC Care list Journals	25

RULES GOVERNING THE EVALUATION OF PROJECT REPORT AND VIVA VOCE

SELECTION OF TOPIC:

- Each student shall select a topic for his / her project in consultation with his / her Guide and the Headof the Department.
- The project report should contain a minimum of 50 pages in A4 format excluding bibliography and appendices.
- Each student should submit two copies of his / her project report for evaluation.
- Last date for the submission of Project Report:
- The project report should be submitted to Department (P.G. Courses) through the Guide on or beforethe last working day for the students of the College for the academic year.
- If a student fails to submitthe project report on or before the last working day, he / she will not be eligible for getting rank.

FIRST EXTENSION:

• If the student fails to submit the project report within the stipulated time, he / she may be permitted to submit the same one day prior to the date of *viva voce*.

SECOND EXTENSION:

- If the student fails to submit the project report one day prior to the date of viva voce then, he / she may apply for a second extension of three months duration.
- The above two extensions may be granted by the Principal based on the written recommendations from the Guide and the Head of the Department.
- Any other unforeseen problems / situations, not mentioned above if arise regarding the project report and *viva voce*, will be placed in the College Council and suitably resolved.

External Total – 75 marks

Project	Total – 50 marks
1. Relevance of the topic to the academic / society	10 Marks
2. Objectives	10 Marks
3. Experimental design	15 Marks
4. Results and discussion	15 Marks
Viva Voce	Total – 25 marks
5. Presentation	15 Marks
6. Discussion	10 Marks

Mapping

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	Н	Н	Н	M	Н	Н	Н
CO2	Н	M	Н	H	M	Н	M	Н	Н	Н
CO3	M	M	Н	Н	L	£-	-	-	Н	Н
CO4	Н	Н	Н	H	Н	Н	Н	Н	Н	Н

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.K.Poonkodi Mrs. K. Vimaladevi Dr. M. Velayutham Pillai Dr.V.Prabhu Mrs.M.Anusuya	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

ADVANCED LEARNERS COURSE

Programme Code:	mme Code: M.Sc Programme Title:			Master	of Chemistry		
Course Code: 23PCY3AL Applied Chemistry (Optional) Lecture Hrs./Week Tutorial - Total Hrs/Sem -		3AL	SAL L		Batch: Semester:	2023 – 2025 III	
		-	Credits:	Grade			
* To understand the chemistry of dairy and leather processing.							
 * To acquire knowledge about ceramic products and lubricants. * To learn about explosives and rocket fuels. 							

Course Outcomes

On the completion of the course the student will be able to

#	CO Statement	Knowledge Level
CO1	List the properties of milk & predict the quality	K1
CO2	Explain the different steps in leather processing and analyze the effluent problems in tanneries	K3
CO3	Use your understanding for the production of manufacturing of ceramic products	K4
CO4	Design and synthesis lubricants with enhanced properties and performance	K4
CO5	Utilize your skills to assess the quality of milk, create leather, and produce the essential raw materials for the ceramics industry.	K5
	K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	;

Units	Content					
	Dairy Chemistry:					
	Composition of Milk, factors affecting the composition of milk, micro flora of raw milk,					
Unit I	milk fat/ proteins/sugar flavour and aroma, physical properties, effect of heat, milk					
	processing – clarification, pasteurization, homogenization. Milk products- Cream, Butter, Ice					
	cream and milk powder. Adulteration of milk.					
	Leather Chemistry:					
Unit II Introduction, Structure of hides and skin, Leather Processing – Process be						
	flaying and curing (drying, salt curing and brine curing and pickling), Soaking, Liming,					
	Fleshing, Unhairing, Deliming and Bathing. Tanning Processes – Vegetable, Synthetic,					

	Chrome and Aldehyde tanning. Tannery effluents and Byproducts – primary and secondary
	treatments.
Unit III	Ceramic Industries Basic raw materials- Chemical conversions including basic ceramic chemistry, Whitewares, Structural clay products, Refractories – specialized ceramic products, vitreous enamel, kilns.
Unit IV	Lubricants Introduction, functions, requirements, mechanism of lubrication, classification of lubricants, properties of lubricating oil – viscosity, viscosity index, oiliness, flash and fire points, cloud and pour points, carbon residue, aniline point, volatility, corrosion and decomposition stabilities.
Unit V	Explosives and rocket fuels Introduction, characteristics, classification – primary, high and low, requirements of explosives, rocket propellants, characteristics, classification – solid and liquid propellants with examples.

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

23PCY3AL

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Durga Nath Dhar	Applied Chemistry –II	Vayu Education of India. 1 st Edition.	2010
2	B. Srilakshmi	Food Science	New Age International Publishers. 7 th Edition.	2014
3	Jayashree Ghosh	Fundamental Concepts of Applied Chemistry	S. Chand &Co. 1 st Edition.	2006
4	M. R. Adams & Maurice O. Moss	Food Microbiology	RSC Publishers, 3 rd Edition.	2007

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	George T. Austin	Shreve's Chemical Process Industries	McGraw – Hill Book Co, 5 th Edition.	1984
2	M. Karunanithi, T. Ramachandran, H.Venkataraman, N. Ayyaswamy	Applied Chemistry	Anuradha Agencies, Reprint	2006

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://www.youtube.com/watch?v=DQ7GmVYD7n0
https://www.youtube.com/watch?v=GQngqnmkIDM
https://www.youtube.com/watch?v=9PgjtJPIakY
https://www.youtube.com/watch?v=RTQ_J8yLw9k
https://www.youtube.com/watch?v=YFGLs7iAkaw

Mapping

PO /PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2
CO1	Н	Н	Н	Н	H	H	Н	Н	Н	Н
CO2	Н	Н	M	H	Н	Н	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO4	Н	Н	M	Н	M	Н	Н	Н	Н	Н
CO5	Н	Н	Н	M	M	Н	Н	Н	Н	M

H-High; M-Medium; L-Low

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.K.Poonkodi	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme code:	M.Sc	Programme Title :		Master of C	hemistry
Course Code:	23PCY2VA	Value Added Course: Entrepreneurial Ventures		Batch	2023-2025
	231 012 111	in Chemistry		Semester	II / IV
Lecture Hrs/Week:	2	Total Hrs/Sem	30	Credits:	2

Course Objectives

- * To provide knowledge of household products to address the needs of chemical industry.
- * Able to synthesize house hold Cleaning agents, formulation of cosmeceuticals and hygiene products.
- * To enhance student sense of enthusiasm for chemistry and to involve them in an intellectually stimulating experience of learning in a supportive environment.
- * To impart knowledge on marketing approaches on studying consumer need, need gaps and global markets.

Employability

- * To provide worldwide opportunity to study household products.
- * Students have the opportunity to undertake an optional placement and enhance their entrepreneur skill by offering valuable experience.

Advantages

Students will be familiar with the different exposure of chemicals used in day to day life such as Cleaning agents, surfactants and Insect repellent one can design and practice ecofriendly cosmetics of their own.

Course Outcomes

- * To acquire basic information about the possibilities and limitations of household products, their importance and marketing.
- * To familiarize the authorized ingredients for household products, their origin, chemical nature and importance.
- * Develop new innovations in Chemical, pharmaceutical, cosmetics and allied chemical industries and successfully implement them at an industrial scale.
- * Hands on experience for manufacturing industries.

Units	Content	Hrs
Unit I	Cleaning agents: Soaps and detergents: Types (cationic and anionic), physical and chemical characteristics, advantages and disadvantages. Examples of Commercially available cleaning agents (shampoo, hand wash, face-wash)	6
Unit II	Disinfectants: Introduction, types, physical and chemical properties, classification (acids, alcohols, aldehydes, alkalis, halogens, phenols) Sanitizers: Sanitizers-Introduction, types, raw material used in making professional hand sanitizer with properties, WHO recommendations for hand sanitizers.	6
Unit III	Cosmetics: Oils, fats, and waxes - Introduction, physical and chemical properties, their use in cosmetics, Preservatives-Introduction, properties, types and their significance. Transition to Greener approach: Importance and Principles of Green Chemistry, bio-enzymes as disinfectants, green cosmetics-make up, shampoo, face pack, face mask, lipsticks.	12
	Practicals 1. Preparation of Soaps. 2. Preparation of liquid detergent using animal fat. 3. Preparation of Hand-Sanitizers. 4. Preparation of Disinfectants. 5. Preparation of cleaning agents using bio-enzymes.	6
	Total Contact Hrs	30

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

23PCYV01

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \EDITION	YEAR OF PUBLICATION
1	Takeo Mitsui	New Cosmetic Science	Elsevier Science Ltd.	1997
2	Sargin C.B	Cosmetic Science and Technology	Wiley India Pvt Ltd; 2 nd Edition	2008
3	Linda D.Rhein, Anthony O'Lenick.	Surfactants in personal care products and decorative cosmetics	CRC Press,3 rd Edition.	2020

	B.P. Sen	Handbook on	Das Gupta &	2004
4		Synthetic detergents	Company (P) Ltd.	
		_	1st edition	

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Kuo-Yann Lai	Liquid Detergents	CRC Press, 2 nd Edition	2020
2	Mylene Stedmen	Soap-Making Manual A Practical Handbook on the Raw Materials, Their Manipulation, Analysis and Control in the Modern Soap Plant(E-Book)	Dhanpat Rai Publishing Company, 15 th Edition	2018

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.K.Poonkodi Mrs. M.Anusuya	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Manicka Chezhian
Signature:	Signature:	Signature:	Signature:

Programme code:	M.Sc	Programme Title :		Master of C	hemistry
Course Code:	23PCY4VA	Value added course A Biofuels and Energy Storage Devices		Batch	2023-2025
				Semester	II / IV
Lecture Hrs/Week:	2	Total Hrs/Sem	30	Credits:	2
		Saana		•	

Scope

- * This course will train participants with the knowledge and skills required for energy storage devices.
- * This course is designed to expertise in current trends in batteries and energy storage devices.

Course Objectives

Upon completion, the participant should be able to:

- * To enable the students to attain knowledge on different types of batteries.
- * To gain knowledge in biofuels and fuel cells.

Course Outcomes

- * Graduates will be qualified to work in energy sector.
- * To apply the various recent trends in battery research.
- * Students have the opportunity to undertake an optional placement and enhancetheir entrepreneur skill by offering valuable experience.

Units	Content	Hrs
Unit I	Energy storage and conversion devices Charge storage mechanism, lead-acid batteries, metal ion batteries, metal sulfur batteries, metal air batteries, super capacitors, pseudo capacitors, advanced Li-ion and beyond Li-ion battery systems (multivalent battery systems), redox-flow batteries, solid state thin film batteries, solid state micro super capacitors.	7
Unit II	Fuel cells Classification - chemistry of fuel cells - detailed description of hydrogen/oxygen fuel cells - methanol - molten carbonate solid polymer electrolyte and biochemical fuel cells.	8
Unit III	Solar energy conversion devices - photovoltaic cells - photo electrochemical cells - semiconductor electrolyte junctions photo catalytic modes for fuel conversion process - photo biochemical options. Hydrogen as a fuel - production (thermal, electrolysis, photolysis and photo electrochemical) storage and applications of hydrogen storage. Other methods of energy conversion: processes especially in the form of storage as chemical energy.	
	Total Contact Hrs	30

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
	A. S. J. Appleby and F. K. Foulkes,	Fuel cell Hand Book	Von Nostrand Reinhold	1989
2			McGraw Hill Book Company	1984

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	T. Ohta	Solar Hydrogen energy systems	Peragamon Press	1979
2	M. Gratzel	Energy Resources through photochemistry and catalysis	Academic Press	1983
3	T. Ohta	Energy Technology, Sources, Systems and Frontiers conversions	Pergamon	1994
4	J. G. Speight	The chemistry and technology of petroleum	Marcel Dekker Inc.	1980

Course Designed by	Head of the	Curriculum Development Cell	Controller of the Examination
	Department		
Name and	Name and Signature	Name and Signature	Name and Signature
Signature			
Name:	Name: Dr.K.Poonkodi	Name: Mr.K.Srinivasan	Name: Dr.R.Muthukumaran
Ms. K.Vimaladevi			
Dr.V.Prabhu			
Dr. M. Velayutham			
Pillai			
Signature:	Signature:	Signature:	Signature:

Programme code:	M.Sc		Programme Title:	M.Sc Chemistry	
Course Code:	CF	CERTIFICATE COURSE-I		Batch	2023-2025
23PCYCFC01	Fundamentals of Pharmaceutical Chemistry		Semester:	III	
231 01 01 001			Credits:	2	
Lecture Hrs/Week 2		Tutorial	-	Total Hrs/Sem:	30
Course Objectives:					
* To compete during their search for jobs in the pharmaceutical companies.					
* To acquire the knowledge about medicinal plants and medicinally important compounds.					
* To recognize the importance of Antibiotics, sulphadrugs, Analgesics.					
* To analyze the Antipyretics, Antihypertensive, hypotensive and antineoplastic drugs.					

Course Outcomes (CO)

On the successful completion of the course, students will be able to

#	CO Outcomes	Knowledge Level	
CO1	Acquire knowledge about the important terminologies used in pharmaceutical	K2	
	chemistry, naming of drugs and mechanism of drug action.		
CO2	Learn about medicinal plants and medicinally important compounds.	K4	
CO3	Recognize the importance of Blood, receptor and drug design.	K5	
CO4	Analyze the Antipyretics, Antihypertensive, hypotensive and antineoplastic drugs.	K4	
CO5	Explain receptors and drug design	K5	
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate			

Units	Content	
Unit I	Introduction to Pharmaceutical Chemistry Introduction Important terminologies used in pharmaceutical chemistry – pharmacology – drug – pharmocophore – antimetabolites – mutation – grams test – actinomycetes – immunological agents – vaccines – toxoids – immune – human sera – primary immunization – routes of drug administration – additive effect – synergism – antagonism – placebo – important drugs which cause dependence –	Hrs 8
	dosage – mechanism of drug action – factors influencing the metabolism of drugs -principles of bio assay – encapsulation – naming of drugs.	

	Medicinal Plants	
Unit II	Medicinal plants and medicinally important compounds Indian medicinal plants – medicinal plants in cure of diseases – spices as medicines – medicinal plants in the kitchen garden – plant poisoning –medicinally important compounds of Mg, Al, P, As, Hg and Fe-testing cholesterol in serum-estimation of bilirubinin serum–estimation of urea in serum and estimation of inorganic chlorides in blood serum.	8
Unit III	Clinical Chemistry Blood: Composition of blood – estimation of hemoglobin – red cell count. Diagnostic tests in Serum: Na and K salts, chlorides and cholesterol. Estimation Methods: Determination of sugar (glucose) in serum – Folin and Wu's method, Determination of serum cholesterol – Sackett's method for total cholesterol. Estimation of glucose in urine – Benedict's test.	8
	Analgesics and Antipyretics	
Unit IV	Analgesics and Antipyretics Introduction to pharmaceutical chemistry analgesics - Morphine analogues and its modification - Codeine - Synthetic narcotic analgesics - Pethidine and methadone - Narcotic antagonists - Nalorphine - Antipyretic analgesics - pyrazoles - salicylic acid - paraaminophenol derivatives - Aspirin and salol hypnotics and sedatives - Barbiturates - Benzodiazipines.	8
	Receptors and Drug Design	
Unit V	Receptor: Nature of receptors, criteria for receptor identity, types of drug-receptor binding interactions. Drug design: introduction – identification of lead compound by serendipity, endogenous sources, exogenous sources, rational drug design, screening. Optimization of lead compound: analog synthesis.	8
	Total Contact Hrs	40

Direct Instruction, Flipped Class, Digital Presentation

Assessment Methods:

Seminar, Quiz, Assignments, Group Task.

23PCYCFC01

Text Book

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Berger	Medicinal Chemistry	A, Wiley	1000
			Interscience, New	1990.
			York, Volume I	
			and II,	
2	AsutoshKar	Medicinal Chemistry	Wiley Eastern	1992
2		Wedlemar Chemistry	Ltd, Chennai,	1392

Reference Books

S.NO	AUTHOR	TITLE OF THE BOOK	PUBLISHERS \ EDITION	YEAR OF PUBLICATION
1	Bentley Driver's	Textbook of Pharmaceutical Chemistry		1985
2	Wilson, O. Giswold George.F	Textbook of Organic medicinal and pharmaceutical chemistry,	Philadelphia,	1991

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites]

https://nptel.ac.in/courses/104/106/104106106/

Course Designed by	Head of the Department	Curriculum Development Cell	Controller of the Examination
Name and Signature	Name and Signature	Name and Signature	Name and Signature
Name: Dr.K.Poonkodi	Name: Dr. K. Poonkodi	Name: Mr. K. Srinivasan	Name: Dr. R. Manicka Chezhian
Signature:	Signature:	Signature:	Signature: